The Na Bop-Pu Sap Pb-Zn ore bodies represent a typical vein-type lead-zinc deposit situated in the Cho Don area and are currently being extracted for their lead and zinc resources. This deposit is characterized by its significant scale and quality and is considered one of the prominent lead-zinc deposits in the Cho Don area. Despite its significance, this deposit has not received adequate attention, resulting in limited knowledge of its geology, mineralization, and deposit genesis model. To address this knowledge gap, our study utilized several methodologies, including field surveying, ore mineral analysis under a microscope, and S and Pb isotopic geochemistry. By employing these approaches, we were able to obtain specific insights into the origin of mineralization and the deposit model. Our field survey suggests that the ore deposits are formed as Pb-Zn-bearing veins along Devonian shale, claystone, and limestone faults. Microscopic analyses of the veins reveal the presence of galena, sphalerite, chalcopyrite, pyrite, arsenopyrite, and pyrrhotite as ore minerals, and quartz, calcite, dolomite, and chalcedony as gangue minerals. Sulfur-isotope values (δ34SCDT) of galena 5.3 to 0.1‰ (average 2.8‰), sphalerite 6.8 to 2.5‰ (average 5.3‰), and pyrite 5.8 to 4.1‰ (average 4.9‰) indicate that the sulfide mineralization may be related to a deep source, possibly originating from magmatic activity in the region and contaminated by carbonate-bearing marine sedimentary rocks. Lead-isotope studies indicate a model age of 598-424 Ma for the lead reservoir, consistent with the possible presence of local source rocks containing sulfur. The lead and sulfur in the ore veins were probably contaminated by Devonian carbonate-bearing marine sedimentary rocks and leached from Neoproterozoic to Cambrian magmatic activity. The lead-zinc deposits in Na Bop-Pu Sap do not display any Mississippi valley-type (MVT) or Sedimentary exhalative (SEDEX) lead-zinc deposit characteristics, as they appear to be related to shear zone-hosted lead-zinc deposits.
Four samples were collected from the wastewater of State Battery Manufacturing Company (SBMC); Babylon 2 factory in AL-Waziriya district, as triplicates. Physical and chemical measurements were carried out such as temperature, pH, Lead concentrations and their ranges were: (19.5-34.5) °C, (6.1-6.4) and (4.5-6.5) mg/L, respectively. Six dominant Bacillus spp. isolates were isolated from these samples; namely, Bacillus subtilis N1, Bacillus subtilis N2, Bacillus subtilis N3, Bacillus cereus N4, Bacillus cereus N5 , Bacillus cereus N6. These isolates were capable of removing Lead from aqueous solutions in a capacity reached 27.6 ± 1.4, 10.1 ± 1.7, 74.5 ± 0.7, 8.93 ± 2.8, 8.1 ± 3.5, 1.6± 0.7 mg/L, respectively. Whereas cell walls,
... Show MoreThe lead has adverse effects in contamination the aquatic environment, for this reason, a laboratory simulation was conducted using kaolinite collected from the Ga’ara Formation at western Iraq to be considered as a natural sorbent material that can be addressed Pb2+ from the aqueous environments. The Energy-Dispersive X-ray Spectroscopy and atomic absorption spectroscopy clarifying very fine grains and pure phase with a very little quantity of quartz and has a number of active sites for adsorption. The sorption of kaolinite for the Pb2+ has been carefully tested by several designed laboratory experiments. Five lead solutions of different concentrations (25, 50, 75, 100 and 125 ppm) were tested under different values of pH (1.3-9)
... Show MoreAbstract
Mitoxantrone is an antitumor agent used in the treatment of breast and prostate cancer, acute leukemia, lymphoma, and also in the treatment of multiple sclerosis due to its immunosuppressive properties. The mitoxantrone's cardiotoxicity is irreversible, dose-dependent, and it may occur years after treatment. Zinc is considered as an essential mineral for cell division and the synthesis of DNA and protein; furthermore, such mineral has an important role in states of cardiovascular diseases; and may have protective effects in coronary artery disease and cardiomyopathy.
Objective: The current study is designed to investigate effects of two different doses of zinc sulfat
... Show MoreMM Al-Waiz, AA Al-Nuaimy, HA Aljobori, MJ Abdulameer, Annals of Saudi Medicine, 2006 - Cited by 1
Staphylococcus lugdunensis, isolation between 12.5 to 1.8% routine works may be a possible peroral route of infective endocarditis and found in the oral cavity by examined using saliva. Similar supragingival plaque isolation was observed. The increased bacteria resistance to antibiotics multiple have led to novel methods for resistance bacteria; antimicrobial agents are well known (ZnO NPs) by biological method and are lower toxicity and biology safety ZnNOPs activity by plant extraction and less toxicity as well as bio-safe. The nanoparticle was synthesized by biological method (Green) by barberry (Berberis vulgaris) extract. In this study using (WAD) method using different concentrations between (128, 64, 32, and 16) mg/mL of ZnO NPs, The
... Show MoreStaphylococcus lugdunensis, isolation between 12.5 to 1.8% routine works may be a possible peroral route of infective endocarditis and found in the oral cavity by examined using saliva. Similar supragingival plaque isolation was observed. The increased bacteria resistance to antibiotics multiple have led to novel methods for resistance bacteria; antimicrobial agents are well known (ZnO NPs) by biological method and are lower toxicity and biology safety ZnNOPs activity by plant extraction and less toxicity as well as bio-safe. The nanoparticle was synthesized by biological method (Green) by barberry (Berberis vulgaris) extract. In this study using (WAD) method using different concentrations between (128, 64, 32, and 16) mg/mL of ZnO
... Show MoreLead-free 0.88(Na0.5Bi0.5)TiO3–0.084(K0.5Bi0.5)TiO3–0.036BaTiO3 (BNT–BKT–BT) piezoelectric ceramics were prepared using the conventional mixed-oxide method with a sintering temperature range of 1120–1200 °C. The effect of the sintering temperature on the crystal structure, microstructure, and densification, as well as the dielectrics, piezoelectrics, and the pyroelectric properties of BNT–BKT–BT ceramics were investigated. Scanning electron microscopy and X-ray diffraction were used to study the microstructures of the sintered samples. The results showed that the increase in sintering temperature was very effective in improving both the density and electrical properties. However, the samples deteriorated when the sintering te
... Show MoreThe possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied
This study aimed to evaluate good manufacturing practices in food safety of ten different restaurants in the Al-Karkh area of Baghdad, Iraq. Forty samples collected from were collected from knives, food cutting boards, tables, hands and nails workers in restaurants. In addition. 70 food handlers were selected. Through structured interviews, information on the checklist for Good Manufacturing Practices in Food Safety, Food handlers’ general checklist for good hygiene, and Personal Hygiene Checklist were collected. The overall viable bacterial count before Good Hygiene Practices was significantly higher (P<0.05) than the total bacterial counts after Good Hygiene Practices. The highest viable bacterial counts before Good Hygiene P
... Show MoreHigh cost of qualifying library standard cells on silicon wafer limits the number of test circuits on the test chip. This paper proposes a technique to share common load circuits among test circuits to reduce the silicon area. By enabling the load sharing, number of transistors for the common load can be reduced significantly. Results show up to 80% reduction in silicon area due to load area reduction.