Bodas de sangre es una tragedia en verso del escritor Federico García Lorca escrita en 1932, y estrenada el 8 de marzo de 1933 en el teatro Beatriz de Madrid con gran éxito tanto en España como en Hispanoamérica. Fue llevada al cine por Carlos Saura en 1981. Es una producción poética y teatral que se centra en el análisis de un sentimiento trágico. Desde la vida y la muerte, a lo antiguo y lo moderno, en la manera de ver la tragedia. Todo ello enmarcado en un paisaje andaluz trágico y universal.
El tema principal que se trata en este drama es la vida y la muerte. Pero de un modo arcano y ancestral, en la que figuran mitos, leyendas y paisajes que introducen al lector en un mundo de
... Show MoreNowadays, huge digital images are used and transferred via the Internet. It has been the primary source of information in several domains in recent years. Blur image is one of the most common difficult challenges in image processing, which is caused via object movement or a camera shake. De-blurring is the main process to restore the sharp original image, so many techniques have been proposed, and a large number of research papers have been published to remove blurring from the image. This paper presented a review for the recent papers related to de-blurring published in the recent years (2017-2020). This paper focused on discussing various strategies related to enhancing the software's for image de-blur.&n
... Show MoreA numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreIn this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
Thyroid is a small butterfly shaped gland located in the front of the neck just below the Adams apple. Thyroid is one of the endocrine gland, which produces hormones that help the body to control metabolism. A different thyroid disorder includes Hyperthyroidism, Hypothyroidism, and thyroid nodules (benign/malignant). Ultrasound imaging is most commonly used to detect and classify abnormalities of the thyroid gland. Segmentation method is a tool that used widely in many applications including medical image processing. One of the common applications of segmentation is in medical image analysis for clinical diagnosis that has an important role in terms of quality and quantity.
The main objective of this research is to use the Computer-Ai
In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.
In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreIn this paper we will investigate some Heuristic methods to solve travelling salesman problem. The discussed methods are Minimizing Distance Method (MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method (TTHM) and Greedy Method (GRM).
The weak points of MDM are manipulated in this paper. The Improved MDM (IMDM) gives better results than classical MDM, and other discussed methods, while the GRM gives best time for 5≤ n ≤500, where n is the number of visited cities.
This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions and for exponentially fitting problems, with being the problem’s major frequency utilized to improve the precision of the method. The modified method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a framework of equations that can be sol
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.