The Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observed. On the basis of physicochemical data tetrahedral geometries were assigned for the complexes. The ligand and metal complexes were screened for their antimicrobial activity.
Coupling reaction of m-and p- amino acetop henone and p-amino benzoic acid with (LHistidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass sp ectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M (L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the com
... Show MoreCoupling reaction of m-and p- amino acetophenone and p-amino benzoic acid with (L- Histidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass spectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the c
... Show MoreThe ligand 2-Hydroxy-N-pyridin-2-ylmethyl-acetamide(L) has been prepared from reaction of 2-(aminomethyl)pyridin with chloroacetic acid (1:1).It has been characterized by elemental analysis (C,H,N) ,'H, 13 C-NMR, IR and electronic spectra. The complexes of divalent (Co,Ni,Cu,Zn,Cd and Hg) ions and trivalent(Cr) ion have been synthesized and characterized by IR, electronic spectra, molar conductivity, atomic absorption and molar ratio (Ni 2+) complex. The analytical studies for the complexes show; octahedral for (Cr 3+),square planar for (Cu 2+) and (Co,Ni Zn, Cd and Hg) tetrahedral geometries. The study of biological activity of the ligand (L) and its complexes (Co,Ni,Cu,Cd,Hg) in two deferent concentration (1and5) mg/ml showed various acti
... Show MoreThe reaction of methyldopa with o-vanillin in refluxing ethanol afforded Schiff base and characterized through physical analysis with a number of spectra also the study of biological activity. The geometry of the Schiff base was identified through using (C.H.N) analysis, Mass, 1H-NMR, FT-IR, UV-Vis spectroscopy. Metal complexes of Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ with Schiff base have been prepared in the molar ratio 2:1 (Metal:L), (L = Schiff base ligand) except Hg2+ at molar ratio 1:1 (Hg:L). The prepared complexes were characterized by using Mass, FT-IR and UV-Vis spectral studies, on other than magnetic properties and flame atomic absorption, conductivity measurements. According to the results a dinuclear octahedral geo
... Show MoreNew bidentate Schiff base ligand (L) namely [(Z)-3-(2-oxoindolin-3ylildeneamino)benzoic acid] type (NO) was prepared via condensation of isatin and 3-amino benzoic acid in ethanol as a solvent in existence of drops of (glac. CH3COOH). The new ligand (L) was characterized base on elemental microanalysis, FT-IR, UV-Vis, 1H-NMR spectra along with melting point. Ligand complexes in general formula [M(L)2Cl2]. H2O, where: MII = Co, Cu, Cd, and Hg; L= C15H10 N2O3 were synthesized and identified by FT-IR, UV-Vis, 1H-NMR (for Cd complex only) spectra, atomic absorption, chloride content along with molar conductivity and magnetic susceptibility. It was found that the ligand behaves as bidentate on complexation via (N) atom of imine group an
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
Coupling reaction of 4-nitroaniline with 3-aminobenzoic acid provided the corresponding bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1H-NMR, FT-IR, and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with Y(III) and La(III) metal ions in 1:3 M:L ratio in aqueous ethanol at optimum pH yielded a series of neutral complexes with the general formula of [M(L)3]. The prepared complexes were characterized by flame atomic absorption, Elemental Analysis (C, H, N), FT-IR, and UV-Vis spectroscopic methods, as well as conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods; Beer's law obeyed over a concentration range o
... Show More