The excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and their performance was compared with the (conventional) mixture currently used in Iraq. The tests focused on the asphalt-concrete mixture for wearing courses. Different mixtures types were tried, namely, dense hot asphalt mixture (HMA) with two different asphalt contents (4.7% and 5.3%), Open-Grade Friction Course (OGFC) mixture, Stone Mastic Asphalt (SMA) mixture, and Beton Bitumineux a Module Eleve (BBME). The modifiers included natural Sisal Fibers (SFs), Carbon Fibers (CFs), and mineral filler (hydrated lime, HL). Marshall test was carried out to find stability and flow values. Rutting was evaluated by the repeated load test for cylindrical specimens under two temperatures (40°C and 60°C) to obtain the permanent deformation parameters. The parameters were used as input to the VESYS 5W software to evaluate the rut depth during different times of design life under 7×10^6 Equivalent Single Axle Loads (ESALs). The results of the selected mixtures were compared with the mixture designed in the laboratory dense gradation mix Job-Mix Formula (JMF)) within the limits of the Iraqi specification (SCRB,2003). Manipulation of the aggregate gradation that is customary in the implementation of the local mixture showed that the best performance regarding rutting resistance was exhibited by JMF, which decreased the rut depth at 40°C and 60°C by 21.63mm and 44.304mm respectively, in comparison with the conventional mixture. Changing the aggregate gradation of the local mixture gives better performance in rutting resistance without additives or changing the percentage of asphalt, at the same cost.
In this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column
... Show MoreThis paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,
... Show MoreThis paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.
The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism
... Show MoreThis paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show MoreImpact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had
... Show MoreThe main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recomm
... Show MoreA novel demountable shear connector is proposed to link a concrete slab to steel sections in a way that resulting steel-concrete composite floor is demountable, i.e. it can be easily dismantled at the end of its service life. The proposed connectors consist of two parts: the first part is a hollow steel tube with internal threads at its lower end. The second part is a compatible partially threaded bolted stud. After linking the stud to the steel section, the hollow steel tube can be fastened over the threaded stud, which create a complete demountable shear connector. The connector is suitable for use in both composite bridges and buildings, and using cast in-situ slabs, precast solid slabs, or hollow-core precast slabs. A series of push-off
... Show More