The excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and their performance was compared with the (conventional) mixture currently used in Iraq. The tests focused on the asphalt-concrete mixture for wearing courses. Different mixtures types were tried, namely, dense hot asphalt mixture (HMA) with two different asphalt contents (4.7% and 5.3%), Open-Grade Friction Course (OGFC) mixture, Stone Mastic Asphalt (SMA) mixture, and Beton Bitumineux a Module Eleve (BBME). The modifiers included natural Sisal Fibers (SFs), Carbon Fibers (CFs), and mineral filler (hydrated lime, HL). Marshall test was carried out to find stability and flow values. Rutting was evaluated by the repeated load test for cylindrical specimens under two temperatures (40°C and 60°C) to obtain the permanent deformation parameters. The parameters were used as input to the VESYS 5W software to evaluate the rut depth during different times of design life under 7×10^6 Equivalent Single Axle Loads (ESALs). The results of the selected mixtures were compared with the mixture designed in the laboratory dense gradation mix Job-Mix Formula (JMF)) within the limits of the Iraqi specification (SCRB,2003). Manipulation of the aggregate gradation that is customary in the implementation of the local mixture showed that the best performance regarding rutting resistance was exhibited by JMF, which decreased the rut depth at 40°C and 60°C by 21.63mm and 44.304mm respectively, in comparison with the conventional mixture. Changing the aggregate gradation of the local mixture gives better performance in rutting resistance without additives or changing the percentage of asphalt, at the same cost.
Concrete is widely used in construction materials since early 1800's. It has been known that concrete is weak in tension, so it requires some addition materials to have ductile behavior and enhance its tensile strength and strain capacity to improve their uses. In this study reactive powder concrete (RPC) was used with steel fiber by using different types of cement; (Ordinary Portland cement (OPC) and/or Portland- Limestone cement (PLC)) with three types of mixtures (OPC at the first mix, 50 % OPC and 50 % PLC at the second mix and PLC at the third mix). The behavior of RPC with steel fibers on compressive strength and tensile strength of concrete with different ages of curing (7, 14, 28 and 60) days and shrinkage have been studied. The clo
... Show MoreBearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel
... Show MoreThe main objective of this study is to understand the work of the pile caps made of lightweight aerated foam concrete and study the many factors affecting the ability and the capacity of the shear. The study was done by analyzing previous practical and theoretical experiences on the reinforced concrete pile caps. The previous practical results indicated that all specimens failed by shear diagonal compression or tension modes except one specimen that failed flexural-shear mode. Based on test specimens' practical results and behavior, some theoretical methods for estimating the ultimate strength of reinforced concrete pile caps have been recommended, some of which evolved into the design documents available on the subject.
... Show MoreThis research investigated the influence of water-absorbent polymer balls (WAPB) on reinforced concrete beams’ structural behavior experimentally. Four self-compacted reinforced concrete beams of identical geometric layouts 150 mm × 200 mm × 1,500 mm, reinforcement details, and compressive strength
Fire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safety in structural concrete is important for building construction. The slow heat transfer and strength loss enables concrete to be effective for fire resistance. Concrete structures withstand when exposed to fire according to: their thermal properties, rate of heating, characteristic properties of concrete mixes and their composition and on the duration of fire, and concerned as thermal property with other factors such as loss of mass which affected by aggregate type, moisture content, and composition of concrete mix. The present research goal is to study the effect of rising temperature on the compressive strength of the rea
... Show MoreFire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safet, IJSR, Call for Papers, Online Journal
In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show More