Preferred Language
Articles
/
EBahDIcBVTCNdQwCFDP9
The Possibility of Minimizing Rutting Distress in Asphalt Concrete Wearing Course
...Show More Authors

The excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and their performance was compared with the (conventional) mixture currently used in Iraq. The tests focused on the asphalt-concrete mixture for wearing courses. Different mixtures types were tried, namely, dense hot asphalt mixture (HMA) with two different asphalt contents (4.7% and 5.3%), Open-Grade Friction Course (OGFC) mixture, Stone Mastic Asphalt (SMA) mixture, and Beton Bitumineux a Module Eleve (BBME). The modifiers included natural Sisal Fibers (SFs), Carbon Fibers (CFs), and mineral filler (hydrated lime, HL). Marshall test was carried out to find stability and flow values. Rutting was evaluated by the repeated load test for cylindrical specimens under two temperatures (40°C and 60°C) to obtain the permanent deformation parameters. The parameters were used as input to the VESYS 5W software to evaluate the rut depth during different times of design life under 7×10^6 Equivalent Single Axle Loads (ESALs). The results of the selected mixtures were compared with the mixture designed in the laboratory dense gradation mix Job-Mix Formula (JMF)) within the limits of the Iraqi specification (SCRB,2003). Manipulation of the aggregate gradation that is customary in the implementation of the local mixture showed that the best performance regarding rutting resistance was exhibited by JMF, which decreased the rut depth at 40°C and 60°C by 21.63mm and 44.304mm respectively, in comparison with the conventional mixture. Changing the aggregate gradation of the local mixture gives better performance in rutting resistance without additives or changing the percentage of asphalt, at the same cost.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 27 2025
Journal Name
Mechanics Of Time-dependent Materials
Characterization and mechanical performance of stone mastic asphalt mixtures modified with SBS and PE polymers
...Show More Authors

This study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2025
Journal Name
Cleaner Waste Systems
Performance enhancement of natural asphalt using waste-derived modifiers: Sugarcane molasses and waste engine oil
...Show More Authors

The growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Overview of seismic performance assessment of reinforced concrete buildings
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Enhancement of self-healing to mechanical properties of concrete
...Show More Authors
Abstract<p>Concrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH</p> ... Show More
Crossref (1)
Clarivate Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Materials Science And Engineering
Effect of magnetic water on strength properties of concrete
...Show More Authors
Abstract<p>The research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m<sup>3</sup>, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test</p> ... Show More
Crossref (6)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Effect of Biopolymer Alginate on some properties of concrete
...Show More Authors

Alginate from Large brown seaweeds act as natural polymer has been investigated as polymer and has been added to concrete in different percentages ( 0% , 0.5% , 1% and 1.5% ) by the cement weight and the study show the effect of using alginate biopolymer admixtures on  some of the fresh properties of the concrete (slump &  the density  fresh) also in the hardened state (  Compressive strength , Splitting tensile strength  and Flexural strength ) at 28 days. The mix proportion was (1:2.26:2.26) (cement: sand: gravel) respectively and at constant w/c equal to 0.47. The results indicate that the use of alginate as a percent of the cement weight possess a positive effect on fresh properties of co

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Dec 05 2020
Journal Name
Iop Conference Series: Materials Science And Engineering, Volume 1067
The effect of cyclic loading on the nonlinear response of structural concrete members with arbitrary cross-sectional shapes
...Show More Authors

View Publication
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
The Effect of Cement and Admixture Types on the Resistance of High Performance Concrete to Internal Sulphate Attack
...Show More Authors

This work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.

The r

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
Utilization of Iraqi Metakaolin in Special Types of Concrete: A Review Based on National Researches
...Show More Authors

Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Results In Engineering
Advancing asphalt binder performance through nanomaterial and polymer modification: Experimental and statistical insights
...Show More Authors

View Publication
Scopus (9)
Crossref (10)
Scopus Clarivate Crossref