The excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and their performance was compared with the (conventional) mixture currently used in Iraq. The tests focused on the asphalt-concrete mixture for wearing courses. Different mixtures types were tried, namely, dense hot asphalt mixture (HMA) with two different asphalt contents (4.7% and 5.3%), Open-Grade Friction Course (OGFC) mixture, Stone Mastic Asphalt (SMA) mixture, and Beton Bitumineux a Module Eleve (BBME). The modifiers included natural Sisal Fibers (SFs), Carbon Fibers (CFs), and mineral filler (hydrated lime, HL). Marshall test was carried out to find stability and flow values. Rutting was evaluated by the repeated load test for cylindrical specimens under two temperatures (40°C and 60°C) to obtain the permanent deformation parameters. The parameters were used as input to the VESYS 5W software to evaluate the rut depth during different times of design life under 7×10^6 Equivalent Single Axle Loads (ESALs). The results of the selected mixtures were compared with the mixture designed in the laboratory dense gradation mix Job-Mix Formula (JMF)) within the limits of the Iraqi specification (SCRB,2003). Manipulation of the aggregate gradation that is customary in the implementation of the local mixture showed that the best performance regarding rutting resistance was exhibited by JMF, which decreased the rut depth at 40°C and 60°C by 21.63mm and 44.304mm respectively, in comparison with the conventional mixture. Changing the aggregate gradation of the local mixture gives better performance in rutting resistance without additives or changing the percentage of asphalt, at the same cost.
Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
Concrete structures are exposed to aggressive environmental conditions that lead to corrosion of the embedded reinforcement and pre-stressing steel. Consequently, the safety of concrete structures may be compromised, and this requires a significant budgets to repair and maintain critical infrastructure. Prediction of structural safety can lead to significant reductions in maintenance costs by maximizing the impact of investments. The aim of this paper is to establish a framework to assess the reliability of existing post-tensioned concrete bridges. A time-dependent reliability analysis of an existing post-tensioned involving the assessment of Ynys-y-Gwas bridge has been presented in this study. The main cause of failure of this bridge was c
... Show MoreIn this study, the effect of fire flame on the punching shear strength of steel fiber reinforced concrete flat plates was experimentally investigated using nine half-scale specimens with dimensions of 1500×1500 mm and a total thickness of 100 mm. The main investigated variables comprised the steel fiber volume fraction 0, 1, and 1.5% and the burning steady state temperature 500 and 600 °C. The specimens were divided into three groups, each group consists of three specimens. The specimens in the first group were tested with no fire effect to be the reference specimens, while the others of the second and third groups were tested after being exposed to fire-flame effect. The adopted characteristics of the fire test were; (one hour) b
... Show Moret-Self-Compacting Concrete (SCC) reduces environmental noise and has more workability. This research presents an investigation of the behavior of SCC under mechanical loading (impact loading). Two types of cement have been used to produce SCC mixtures, Ordinary Portland Cement (OPC) and Portland Limestone Cement (PLC), which reduces the emission of carbon dioxide during the manufacturing process. The mixes were reinforced with Carbon Fiber Reinforced Polymer (CFRP) which is usually used to improve the seismic performance of masonry walls, to replace lost steel reinforcements, or to increase column strength and ductility. Workability tests were carried out for fresh SCC. Prepared concrete slabs of 500×500×50mm were tested for lo
... Show MoreThis investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
Biaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimat
... Show MoreThis study was prepared to investigate the performance and behavior of concrete thrust blocks supporting pipe fittings. In the water distribution networks, it is always necessary to change the path of the pipes at different degrees or to create new branches. In these regions, an unbalanced force called the thrust force is generated. In order to counter this force, these regions are supported with concrete blocks. In this article, the system components (soil, pipe with its bend and thrust blocks) have been numerically modeled and simulated by the ABAQUS CAE/2019 software program in order to study the behavior and stability of the thrust block with different burial conditions (several b
