The thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
Abstract: Chalcones were used to synthesis series of 2-pyrazoline derivatives and evaluated their antimicrobial and anti-inflammatory activities (E)-1,3-diphenylprop-2-en-1-one (1-5) were synthesized by Claisen-Schmidt Condensation method through the reaction of acetophenone with five various para substituted benzaldehyde in presence of KOH, the reaction monitoring by TLC and the result intermediates were checked by melting point and FT-IR Various 2-Pyrazoline derivatives were prepared by one pot reaction that involved the refluxing of (E)-1,3-diphenylprop-2-en-1-one (1–5) and Hydrazine monohydrate in the presence of glacial acetic acid for 24 hours at a temperature of (45–50) °C fo
... Show MoreDiazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show MoreMagnetic nanoparticles (MNPs) of iron oxide (Fe3O4) represent the most promising materials in many applications. MNPs have been synthesized by co-precipitation of ferric and ferrous ions in alkaline solution. Two methods of synthesis were conducted with different parameters, such as temperature (25 and 80 ̊C), adding a base to the reactants and the opposite process, and using nitrogen as an inert gas. The product of the first method (MNPs-1) and the second method (MNPs-2) were characterized by x-ray diffractometer (XRD), Zeta Potential, atomic force microscope (AFM) and scanning electron microscope (SEM). AFM results showed convergent particle size of (MNPs-1) and (MNPs-2) with (86.01) and (74.14)
... Show MoreThis study including synthesis of some new Schiff bases compounds [1‐6] from the reaction of Sulfamethoxazole drug with some aromatic aldehydes in classical Schiff base method then treatment Schiff bases with succinic anhydride to get oxazepines rings [7-11]These derivatives were characterized by melting point, FT‐IR, 1H NMR and mass spectra. Some of synthesized compounds were evaluated in vitro for their antibacterial activities against three kinds of pathogenic strains Staphylococcus aureus, Escherichia coli
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16, 15, and 20) mg sulfu
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16,
... Show More