The thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
Gypseous soils are spread in several regions in the world including Iraq, where it covers more than 28.6% [1] of the surface region of the country. This soil, with high gypsum content causes different problems in construction and strategic projects. As a result of water flow through the soil mass, permeability and chemical arrangement of these soils vary over time due to the solubility and leaching of gypsum. In this study the soil of 36% gypsum content, is taken from one location about 100 km (62 mi) southwest of Baghdad, where the sample is taken from depth (0.5 - 1) m below the natural ground surface and mixed with (3%, 6%, 9%) of Copolymer and Styrene-butadiene Rubber to improve t
Image compression is a suitable technique to reduce the storage space of an image, increase the area of storage in the device, and speed up the transmission process. In this paper, a new idea for image compression is proposed to improve the performance of the Absolute Moment Block Truncation Coding (AMBTC) method depending on Weber's law condition to distinguish uniform blocks (i.e., low and constant details blocks) from non-uniform blocks in original images. Then, all elements in the bitmap of each uniform block are represented by zero. After that, the lossless method, which is Run Length method, is used for compressing the bits more, which represent the bitmap of these uniform blocks. Via this simple idea, the result is improving
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
The current study examined the impact of using PowerPoint presentation on EFL student’s attendance, achievement and engagement. To achieve the aim of this study, three null hypotheses have been posed as follows: There is no statistically significant difference between the mean score of the experimental group attendance and that of the control one; there is no statistically significant difference between the mean score of the experimental group achievement and that of the control one, and there is no statistically significant difference between the mean score of the experimental group engagement and that of the control one. To verify a hypothesis, a sample of sixty students is chosen randomly from the third year, department of English,
... Show MoreThe large number of failure in electrical power plant leads to the sudden stopping of work. In some cases, the necessary reserve materials are not available for maintenance which leads to interrupt of power generation in the electrical power plant unit. The present study, deals with the determination of availability aspects of generator in unit 5 of Al-Dourra electric power plant. In order to evaluate this generator's availability performance, a wide range of studies have been conducted to gather accurate information at the level of detail considered suitable to achieve the availability analysis aim. The Weibull Distribution is used to perform the reliability analysis via Minitab 17, and Artificial Neural Networks (ANNs) by approaching o
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreThe performance grading system (superpave) has provided means to incorporate binder characteristics with
pavement failure types. It’s a comprehensive system that relates climate, traffic conditions and aging with
critical pavement distress. The objective of this paper is to develop an improved asphalt binder grading
system for Iraq based on the principal of superpave. The country was divided into different zones according
to the highest and lowest temperature ranges and traffic loading. The Performance graded binder proposed
for each zone was compared with some States of USA that have same hot weather of Iraq by using Long
Term Pavement Performance (LTPP v3.1) software. Iraqi asphalt samples were tested using the Supe