In this work, the annual behavior of critical frequency and electron density parameters of the ionosphere have been studied for the years (1989, 2001 and 2014) and (1986, 1996 and 2008) which represent the maximum and minimum of years in the solar cycles (22, 23 and 24) respectively. The annual behavior of (Ne, fo ) parameters have been investigated for different heights of Ionosphere layer (100 -1000) Km. The dataset was created both of critical frequency and electron density parameters by using the international reference ionosphere model (IRI-2016 model). This study showed result that during the maximum solar cycles the values of the (Ne) parameter change with altitude. Where the electron density increases with altitude, and its highest value reaches 400 km during the maximum solar cycles and 300 km during the minimum solar cycles, whereas the critical frequency indicates differences in values over different years and locations.
The Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.
Compaction of triticale grain with three moisture contents (8%, 12%, and 16% wet basis) was measured at five applied pressures (0, 7, 14, 34, and 55 kPa). Bulk density increased with increasing pressure for all moisture contents and was significantly (p < 0.0001) dependent on both moisture content and applied pressure. A Verhulst logistic equation was found to model the changes in bulk density of triticale grain with R2 of 0.986. The model showed similar beha
Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
In this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MoreThis article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing w
... Show MoreBackground: Placenta is a chief cause of maternal and perinatal mortality and significant factor in fetal growth retardation. It undergoes different variations in weight, volume, structure, shape and function continuously throughout the gestation tosupport the prenatal life. Cautious examination of placenta can give information which can be useful in the management of complications in mother and the newborn. Objective: The present work has been attempted towards determination of the morphological ( macroscopic and microscopic) parameters of human full-term placentae and their relation with different parity and age group of mothers. Patients and Methods: A whole of 40 placentae were recently collected.They were divided into four groups
... Show MoreAPFS Mohammed, 2014
Left ventricular hypertrophy (LVH) caused by high blood pressure is linked to increased mortality and arrhythmia risk. This study aimed to evaluate arrhythmia in hypertensive patients due to left ventricular hypertrophy (LVH). A cross-sectional study was performed, assessing participants' blood pressure, echocardiography and electrocardiography, and Holter monitoring in certain cases. There were 300 hypertensive patients >18 years attending the cardiology unit of Baghdad medical city. The study was conducted between January–June 2022. The electrocardiograms at rest for 300 adults with hypertension were investigated. 130 (43.5%) were females, and 170 (56.5%) were males. The mean age of participants was 58 years. Forty-nine (16.3
... Show More