In the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
Solubility problem of many of effective pharmaceutical molecules are still one of the major obstacle in theformulation of such molecules. Candesartan cilexetil (CC) is angiotensin II receptor antagonist with very low water solubility and this result in low and variable bioavailability. Self- emulsifying drug delivery system (SEDDS) showed promising result in overcoming solubility problem of many drug molecules. CC was prepared as SEDDS by using novel combination of two surfactants (tween 80 and cremophore EL) and tetraglycol as cosurfactant, in addition to the use of triacetin as oil. Different tests were performed in order to confirm the stability of the final product which includes thermodynamic study, determination of self-emulsificat
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreThe prospective study has been designed to determine some biomarkers in Iraqi female patients with
breast cancer. The current study contained 30 patients whose tissue samples have been collected from
hospitals in Medical City in Baghdad after consent patients themselves and used immunohistochemical
technique to determine these markers. The results showed a significant correlation between ER and PR tissue
markers (Sig = 0.000) and a significant correlation between cyclin E phenotype and cyclin E intensity (Sig =
0.001).
This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain