Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately clas-sify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast imagepattern classification using an efficient DOM. To reduce the computational complexity of feature extraction,an election mechanism is proposed to reduce the number of processed block patterns. In addition, supportvector machine is used to classify the extracted features for different block patterns. The proposed scheme isevaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-the-artmethods. In addition, we compare the performance of the proposed method based on different DOMs toget the robust one. The results show that the proposed method achieves the highest classification accuracycompared with the existing methods in all the scenarios considered
A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str
... Show MoreThe aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq. In this study, the pre- and post-test were done and the instruments were administered to the students for data collection. The data was analyzed and statistical results rejected null hypothesis of this study. This study revealed that there are no signifigant differences between PBL and PBL with lecture method, thus the PBL without or with lecture method enhances the self-directed learning skills bette
... Show MoreThe work includes synthesis and characterization of some new heterocyclic compounds, as flow: The compound (3) (5-(4-chlorophenyl) -2-hydrazinyl-1,3,4-oxadiazole was synthesized by using two methods; the first method includes the direct reaction between hydrazine hydrate 80% and 5-(4-chlorophenyl)-2- (ethylthio) 1,3,4-oxadiazole (1), the second method involves converting 5-(4-chlorophenyl)-1,3,4-oxadiazol-2-amine (2) to diazonium salt then reducing this salt to compound (3) by stannous chloride. Compound (3) was used as starting material for synthesizing several fused heterocyclic compounds. The compound 6-(4- chlorophenyl)[1,2.4] triazolo [3,4,b][1,3,4] oxadiazole-3-(2H) thione (compound 4) was synthesized from the reaction of compo
... Show MoreThis paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on re
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreThis study aims to evaluate reservoir characteristics of Hartha Formation in Majnoon oil field based on well logs data for three wells (Mj-1, Mj-3 and Mj-11). Log interpretation was carried out by using a full set of logs to calculate main petrophysical properties such as effective porosity and water saturation, as well as to find the volume of shale. The evaluation of the formation included computer processes interpretation (CPI) using Interactive Petrophysics (IP) software. Based on the results of CPI, Hartha Formation is divided into five reservoir units (A1, A2, A3, B1, B2), deposited in a ramp setting. Facies associations is added to well logs interpretation of Hartha Formation, and was inferred by a microfacies analysis of th
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreBecause of the rapid development and use of the Internet as a communication media emerged to need a high level of security during data transmission and one of these ways is "Steganography". This paper reviews the Least Signification Bit steganography used for embedding text file with related image in gray-scale image. As well as we discuss the bit plane which is divided into eight different images when combination them we get the actual image. The findings of the research was the stego-image is indistinguishable to the naked eye from the original cover image when the value of bit less than four Thus we get to the goal is to cover up the existence of a connection or hidden data. The Peak to Signal Noise Ratio(PSNR) and Mean Square Error (
... Show More