Preferred Language
Articles
/
EBZzBYcBVTCNdQwCTy-h
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately clas-sify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast imagepattern classification using an efficient DOM. To reduce the computational complexity of feature extraction,an election mechanism is proposed to reduce the number of processed block patterns. In addition, supportvector machine is used to classify the extracted features for different block patterns. The proposed scheme isevaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-the-artmethods. In addition, we compare the performance of the proposed method based on different DOMs toget the robust one. The results show that the proposed method achieves the highest classification accuracycompared with the existing methods in all the scenarios considered

Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Electrical Engineering
A Method Combining Compressive Sensing-Based Method of Moment and LU Decomposition for Solving Monostatic RCS
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Investigation of the Quadrupole Moment and Form Factors of Some Ca Isotopes: Quadrupole Moment
...Show More Authors

Nuclear shell model is adopted to calculate the electric quadrupole moments for some Calcium isotopes 20Ca (N = 21, 23, 25, and 27) in the fp shell. The wave function is generated using a two body effective interaction fpd6 and fp space model. The one body density matrix elements (OBDM) are calculated for these isotopes using the NuShellX@MSU code. The effect of the core-polarizations was taken through the theory microscopic by taking the set of the effective charges. The results for the quadrupole moments by using Bohr-Mottelson (B-M) effective charges are the best. The behavior of the form factors of some Calcium isotopes was studied by using Bohr-Mottelson (B-M) effective charges.

View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Partial Encryption for Colored Images Based on Face Detection
...Show More Authors

Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Moving Objects Detection Based on Frequency Domain: image processing
...Show More Authors

In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
...Show More Authors

View Publication
Scopus (15)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Fri Apr 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
SMS Spam Detection Based on Fuzzy Rules and Binary Particle Swarm Optimization
...Show More Authors

View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Sun Jul 01 2012
Journal Name
2012 International Symposium On Innovations In Intelligent Systems And Applications
Edge detection for fast block-matching motion estimation to enhance Mean Predictive Block Matching algorithm
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
Matching Algorithms for Intrusion Detection System based on DNA Encoding
...Show More Authors

Pattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o

... Show More
Scopus (2)
Scopus