<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>
Abstract
We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-squar
... Show MoreEssential approaches involving photons are among the most common uses of parallel optical computation due to their recent invention, ease of production, and low cost. As a result, most researchers have concentrated their efforts on it. The Basic Arithmetic Unit BAU is built using a three-step approach that uses optical gates with three states to configure the circuitry for addition, subtraction, and multiplication. This is a new optical computing method based on the usage of a radix of (2): a binary number with a signed-digit (BSD) system that includes the numbers -1, 0, and 1. Light with horizontal polarization (LHP) (↔), light with no intensity (LNI) (⥀), and light with vertical polarization (LVP) (↨) is represen
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreThis research aims to examine the relationship between learning organization and behavior of work teams. The variable of the learning organization took four dimensions depending on the study (sudhartna & Li, 2004): Common cultural values , communication, knowledge transfer and the characteristics of workers. The behavior of teams was identified on the basis of realizing of the respondents of their organization to work as a team where the research relied concepts applied in the study (Hakim , 2005) , and chose to research the case of a service organization for the study and relied on four dimensions of coordination , cooperation , sharing of information , the performance of the team, and was a curriculum approach and des
... Show MoreThe comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
Preparation and Identification of some new Pyrazolopyrin derivatives and their Polymerizations study