Preferred Language
Articles
/
DxenW5IBVTCNdQwC2K3g
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>

Scopus Crossref
View Publication
Publication Date
Mon Jun 01 2020
Journal Name
Iraqi Journal Of Physics
Monitoring dust storm using Normalized difference dust index (NDDI) and brightness temperature variation in Simi arid areas over Iraq
...Show More Authors

Dust storms are a natural phenomenon occurring in most areas of Iraq. In recent years, the study of this phenomenon has become important because of the danger caused by increasing desertification at the expense of the green cover as well as its impact on human health. In this study  is important to devote the remote sensing of dust storms and its detection.Through this research, the dust storms can be detected in semi-arid areas, which are difficult to distinguish between these storms and desert areas. For the distinction between the dust storm pixels in the image with those that do not contain dust storm can be applied the Normalized Difference Dust Index (NDDI) and Brightness Temperature variation (BTV). MODIS sensors that carried

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Using Evolving Algorithms to Cryptanalysis Nonlinear Cryptosystems
...Show More Authors

            In this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Engineering
Development of Regression Models for Predicting Pavement Condition Index from the International Roughness Index
...Show More Authors

Flexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
A Survey on Feature Selection Techniques using Evolutionary Algorithms
...Show More Authors

     Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Advances On Computational Intelligence In Energy
A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption
...Show More Authors

Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data
...Show More Authors

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Regression Models Estimation for the poverty Rates In the districts of Iraq in 2012
...Show More Authors

The research took the spatial autoregressive model: SAR and spatial error model: SEM  in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Agricultural And Statistical Sciences
Forecasting the Saudi Crude Oil Price Using MS-GARCH Model
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Advances In Intelligent Systems And Computing
Optimal Prediction Using Artificial Intelligence Application
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i

... Show More
Crossref