<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>
In the absence of environmental regulation, food stays to be contaminated with heavy metals, which is becoming a big worry for human health. The present research focusses on the environmental and health effects of irrigating a number of crops grown in the soils surrounding the Al-Rustamia old plant using treated wastewater generated by the plant. The physicochemical properties, alkalinity, and electrical conductivity of the samples were evaluated, and vegetable samples were tested for Cd, Pb, Ni, and Zn, levels, and even the transfer factor (TF) from soils to crops and crop and multi-targeted risk, daily intake (DIM) of metals, and health risk index (HRI) was calculated. The findings found that the average contents of Zn, Pb, Ni, and Cd in
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreA low-cost, RGB LED-based visible-light spectrophotometer was designed to measure dyes concentration. Dyes are widely used as indicators or coloring agents in different applications and knowing their concentration is an essential part for many studies. The proposed spectrophotometer provides many functionalities that clones the traditional expensive spectrophotometers for a budged price under $50. It was aimed to provide a versatile tool for instructors and educators to teach their students the fundamental concepts behind spectrophotometry. Malachite green, methyl red, and methyl orange dyes were chosen to be good samples to show the integrity of the proposed spectrophotometer in terms of accuracy, repeatability, and sensitivity as
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThe type of video that used in this proposed hiding a secret information technique is .AVI; the proposed technique of a data hiding to embed a secret information into video frames by using Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Curvelet Transform (CvT). An individual pixel consists of three color components (RGB), the secret information is embedded in Red (R) color channel. On the receiver side, the secret information is extracted from received video. After extracting secret information, robustness of proposed hiding a secret information technique is measured and obtained by computing the degradation of the extracted secret information by comparing it with the original secret information via calculating the No
... Show MoreCutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and
... Show More