Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA with more biological consistency. For this purpose, a new crossover operator is suggested where biological information in terms of both gene semantic similarity and protein functional similarity is fed into its design. To reflect the heuristic roles of both semantic and functional similarities, this paper introduces two gene ontology (GO) aware crossover operators. These are direct annotation-aware and inherited annotation-aware crossover operators. The first strategy is handled with the direct gene ontology annotation of the proteins, while the second strategy is handled with the directed acyclic graph (DAG) of each gene ontology term in the gene product. To conduct our experiments, the proposed EAs with GO-aware crossover operators are compared against the state-of-the-art heuristic, canonical EAs with the traditional crossover operator, and GO-based EAs. Simulation results are evaluated in terms of recall, precision, and F measure at both complex level and protein level. The results prove that the new EA design encourages a more reliable treatment of exploration and exploitation and, thus, improves the detection ability for more accurate protein complex structures.
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga
... Show MoreMolecular farming has become one of the most significant implementations of modern biotechnology to generate modified plant crops to produce medicinal proteins. Agrobacterium is one plant genetic engineering tool that integrates genes of interest inside a host plant. In recent years, the need to produce recombinant proteins as therapeutics has growing rapidly, and human glucocerebrosidase is one of the proteins that is need to treat disease. In this study, specific primers were designed to amplify Hu-GBA1 gene from constructed pGEM-GBA plasmid which was cloned into the plant expression vector pCAMBIA1304. The generated recombinant pCAMBIA1304-GBA plasmid was used to transform A. tumefaciens LBA4404
... Show MoreAcute lymphoblastic leukemia (ALL) is a cancer of the blood and bone marrow (spongy tissue in the center of bone). In ALL, too many bone marrow stem cells develop into a type of white blood cell called lymphocytes. These abnormal lymphocytes are not able to fight infection very well. The aim of this study was to investigate possible links between E3 SUMO-Protein Ligase NSE2 [NSMCE2] and increase DNA damage in the childhood patients with Acute lymphoblastic leukemia (ALL). Laboratory investigations including hemoglobin(Hb) ,white blood cell (WBC) , serum total protein , albumin ,globulin , in addition to serum total antioxidant activity (TAA) , Advanced oxidation protein products(AOPP) and E3 SUMO-Protein Ligase NSE2[NSMCE2]. Blood samples
... Show MoreData Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreRecently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreChoosing antimicrobials is a common dilemma when the expected rate of bacterial resistance is high. The observed resistance values in unequal groups of isolates tested for different antimicrobials can be misleading. This can affect the decision to recommend one antibiotic over the other. We analyzed recalled data with the statistical consideration of unequal sample groups. Data was collected concerning children suspected to have typhoid fever at Al Alwyia Pediatric Teaching Hospital in Baghdad, Iraq. The study period extended from September 2021 to September 2022. A novel algorithm was developed to compare the drug sensitivity among unequal numbers of Salmonella typhi (S. Typhi) isolates tested with different antibacterials.
... Show More