Fractional Er: YAG laser resurfacing is increasingly used for treating rhytides and photo aged skin because of its favorable benefit‐risk ratio. The multi-stacking and variable pulse width technology opened a wide horizon of rejuvenation treatments using this type of laser. To evaluate the efficacy and safety of the use of fractional 2940 nm Er: YAG laser in facial skin rejuvenation. Twelve female patients with mean age 48.3 years and multiple degrees of aging signs and solar skin damages, were treated with 2 sessions, one month apart by fractional Er: YAG laser. Each session consisted of 2 steps, the first step employed the use of the multi stack ablative fractional mode and the fractional long pulsed non-ablative mode settings were u
... Show MoreRecently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreThe techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreThe process of granting loans by banks is the confidence they give to their customers, but this trust should not be a cornerstone in granting loans even if granted these loans on the basis of sound banking should involve risks that may be exposed to the bank because of the failure of the client to meet The bank's financial obligations to the bank due to the unexpected economic conditions affecting the customers, which makes them in a state of faltering, which weaken the ability of banks to provide loans, which are the most important sources of revenue and profits, so the problem of non-performing loans is one of the main problems facing most of the banks Which impede the functioning of its work and the reasons that led to the agg
... Show MoreObjective: To determine the correlation between the second derivative of digital pulse wave and the QT variability index. Method: The cross-sectional study was conducted from October 2021 to May 2022 at the Department of Physiology, College of Medicine, University of Mustansiriyah, Baghdad, Iraq, and comprised healthy women. Samples were raised by simple random technique. Digital pulse waves were captured using a fingertip pulse wave transducer. Lab Chart Pro version 7.2 was used to automatically detect and quantify the amplitude of A, B, C, D and E waves expressed by the second derivative. QT interval of each beat was recorded by electrocardiogram, and was calculated automatically via Lab chart Pro version 7.2 without averaging. D
... Show MoreConvergence prop erties of Jackson polynomials have been considered by Zugmund
[1,ch.X] in (1959) and J.Szbados [2], (p =ï‚¥) while in (1983) V.A.Popov and J.Szabados [3]
(1 ï‚£p ï‚£ ï‚¥) have proved a direct inequality for Jackson polynomials in L
p-sp ace of 2ï°-periodic bounded Riemann integrable functions (f R) in terms of some modulus of
continuity .
In 1991 S.K.Jassim proved direct and inverse inequality for Jackson polynomials in
locally global norms (L
ï¤,p) of 2ï°-p eriodic bounded measurable functions (f Lï‚¥) in terms of
suitable Peetre K-functional [4].
Now the aim of our paper is to proved direct and inverse inequalities for Jackson
polynomials
This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions, (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear
... Show MoreOur aim of this research is to find the results of numerical solution of Volterra linear integral equation of the second kind using numerical methods such that Trapezoidal and Simpson's rule. That is to derive some statistical properties expected value, the variance and the correlation coefficient between the numerical and exact solutionâ–¡
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this paper, Min-Max composition fuzzy relation equation are studied. This study is a generalization of the works of Ohsato and Sekigushi. The conditions for the existence of solutions are studied, then the resolution of equations is discussed.