Tonsillitis is an infection or inflammation of the tonsils. Tonsillitis classified as acute, chronic (recurrent) and complication. Most often it is caused by a virus, but it may also be caused by the same bacteria that cause strep throat. According to numbers that data shows, the virus is more common, about 77.49% than bacterial which about 71.45% then fungal about 9.6%. The principal symptom of tonsillitis is a sore throat fever, swollen lymph nodes, nasal congestion, difficulty in swallowing and headache may also occur, according to if symptoms of tonsillitis are known or not, data show that they know about (119 of people) (79.3) this result is greater than unknown which was about 31 (20.7).
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe diverse urban spaces of the streets is an important part of the city's physicist configuration and a link between architectural and civilizational communication through time starting from the historic towns down to the contemporary cities, within the proposals of the future cities. From general observations and literature review a research problem is crystallized as some directions not arbitrary rational when expansion and the growth of cities, and other measures wrong or the existence of some incorrect actions and processes related to the cities planning as a categorizing the goals and priorities in city plan.The streets were constitute a high proportion of the total area of cities, where up to over 30% in major cities. These
... Show MoreThis research examines the factors which influence pedestrian's walking speed in Baghdad. the variations in walking speed of pedestrians are related to pedestrian characteristics such as gender, age group, and clothing traditions. Using the established methodology, the counts of pedestrians were performed using manual and video counting. The case study was performed in two streets located in a highly crowded commercial zone at the city center of Baghdad: Al-Karada Dakhel and Al- Sina’a Street. Data were subjected to statistical analysis using IBM SPSS Statistics 19 software. It has been found that Iraqi pedestrians walk slower than other pedestrians in the developed countries or in the region with minimum walking speed of 29.85 m/min.
... Show MoreThe purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be
... Show MoreIn recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. T
... Show MoreIn this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show More