A novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theory, the stability proof of the two closed-loop controllers and observers is presented. Comparative simulations are carried out to confirm that the proposed controller outperforms conventional methods and offers greater accuracy of temperature, humidity, and carbon dioxide concentration, having superior regulation performance in terms of a rapid finite time convergence, an outstanding disturbance rejection property, and better energy consumption. In addition to presenting the comparative simulation results from the control applications on the VAV system, the quantitative values are provided to further confirm the superiority of the proposed controller. In particular, the proposed method exhibits the shortest settling time of, respectively, 15 and 40 min to reach the expected temperature and humidity, whereas other comparative controllers require a longer time to settle down.
Background: Dyslipidemia is defined as an abnormally high level of various lipids in the blood. It is considered a major risk for atherosclerosis and coronary artery disease. Genetic susceptibility can have a significant influence on the development and progression of dyslipidemia. ApoB-100 R3500Q mutation and ApoE variants are among those genetic risks for dyslipidemia. This study aims to assess the possible contribution of ApoB and ApoE variants on lipid profile among a group of early-onset ischemic heart disease (IHD) patients in comparison to a group of controls. Methods: Forty patients with dyslipidemia and early-onset IHD without chronic conditions likely to cause derangement of lipid levels were recruited to this case-control study
... Show Moreتم استخدام خرائط ضبط الجودة الإحصائية لتقييم جودة الخدمة التعليمية في جامعة الباحة، ويهدف هذا البحث إلى استخدام خرائط ضبط الجودة الإحصائية لقياس مستوى الجودة وفجوة الجودة بين توقعات الطلبة وإدراكاتهم لمستوى الخدمة الذي تقدمه جامعة الباحة. حيث تم اختيار عينة من 200 طالب وطالبة عشوائيا باستخدام العشوائية العنقودية من 4 كليات خلال الفترة 01 – 30/2015م، وجمعت البيانات من خلال استبيان جودة الخدمة الذي يقيس ت
... Show MoreObjective(s): To evaluate nurses' practices who work in respiratory intensive care units to control the
complications of patients admitted at this unit and determine the relationship between nurses' sociodemographic
characteristics and their practices.
Methodology: A descriptive study was carried out at Respiratory Care Unit at Baghdad teaching hospitals that
started from February 22th, 2013 to August 30th, 2013. A purposive "non-probability" sample of (70) nurses who
work in Respiratory Care Unit was selected from Baghdad teaching hospitals. The data were collected through the
use of constructed questionnaire that consists of two parts; (l) Demographic data form that consists of 7items and
(2) nurses' practice form
Tungsten inert gas arc welding–based shaped metal deposition is a novel additive manufacturing technology which can be used for fabricating solid dense parts by melting a cold wire on a substrate in a layer-by-layer manner via continuous DC arc heat. The shaped metal deposition method would be an alternative way to traditional manufacturing methods, especially for complex featured and large-scale solid parts manufacturing, and it is particularly used for aerospace structural components, manufacturing, and repairing of die/molds and middle-sized dense parts. This article presents the designing, constructing, and controlling of an additive manufacturing system using tungsten inert gas plus wire–based shaped metal deposition metho
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreModeling the microclimate of a greenhouse located in Baghdad under its weather conditions to calculate the heating and cooling loads by computer simulation. Solar collectors with a V-corrugated absorber plate and an auxiliary heat source were used as a heating system. A rotary silica gel desiccant dehumidifier, a sensible heat exchanger, and an evaporative cooler were added to the collectors to form an open-cycle solar assisted desiccant cooling system. A dynamic model was adopted to predict the inside air and the soil surface temperatures of the greenhouse. These temperatures are used to predict the greenhouse heating and cooling loads through an energy balance method which takes into account the soil heat gain. This is not included in
... Show MoreThe liver is one of the largest glands in the digestive system and performs 13 various functions, including the secretion of hormones and enzymes. The gallbladder serves as a storage reservoir for secretions before they are released into the digestive system through the duodenum. The bile ducts branch from the liver’s lobes and ultimately connect to the digestive system, making this structure significant and distinct among different animal species. This review focuses on the differences between dogs and cats, highlighting the importance of these differences from both health and pathological perspectives. After conducting a detailed scientific review of the biliary tree in dogs and cats, we concluded that cats are more susceptible to the d
... Show More