There are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to solve the mass and heat balance equations for the adsorbent bed, condenser, and evaporator components. At a typical temperature of 89 °C and flow rate of 30 m3/sec for the hot water entering the bed, the following results are reported: (a) the specific daily water production of 1.89 m3 /ton of silica gel/ day, (b) coefficient of performance of 0.32, and (c) specific cooling power of 40.82 W/kg of silica gel. The concentration of salt (X) in the product (desalinated water) has been set with value of 0.5 gm/kg to be suitable for drinking and irrigation. The salt concentration in the evaporator is estimated to be 4.611 gm/kg during the overall adsorption process. The results from this study should be of wide interest for the field of solar water desalination and air-conditioning.
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density , the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the
... Show MoreA solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.
Aim: The reduction in the amount of marginal bone is the most important demand for the long term success of dental implants. This prospective clinical study was aimed to investigate the marginal bone loss of early loaded SLActive implants with different dimensions and surgical approaches. Materials and methods Fifteen patients aged from 18 to 60 years were divided into 2 groups (flapped and flapless approach) that underwent delayed implant placement protocol with SLActive implants. The marginal bone level was estimated by cone-beam computed tomography during three different periods: preoperatively, 8 weeks after surgery and 24 weeks after loading of the prosthesis. Results: The mean value of marginal bone level was not significantly chan
... Show MoreBACKGROUND: Femoral shaft fracture is a common fracture in pediatric age group reaching 62% of all fracture shaft femur in children in spite of rapid union rate and successful conservative treatment but some cases need surgical intervention and one of the methods using plate and screw by the lateral approach. AIM: This study aims to compare functional outcome fixation of mid-shaft femur fracture in children by plate and screws between (subvastus lateralis and transvastus lateralis) regarding infection, union, and limitation of knee movement. PATIENT AND METHOD: The study was done on 30 children who had diaphyseal fracture femur in Al-Kindy Teaching Hospital in period (April 2018–April 2020) with 6 months follow-up, and the pa
... Show MoreCore decompression is one of the commonest used techniques in the handling of osteonecrosis of the pre-collapsed head of the femur. Core decompression had succeeded in preserving the hip joint and delaying the requisite for total hip replacement, but it had failed in the induction of osteogenesis in the necrotic area, thus augmenting core decompression with biological agents to induce osteogenic activity. To assess the effects of platelet-rich plasma in non-traumatic avascular necrosis of the hip joint (early stage) after core decompression. Interventional comparative study for twenty-four patients (32 hip joints) with AVN of the head of the femur was involved in this prospective study, and they were separated into two groups of 16
... Show MoreIn the present study, a powder mixture of elements Ti and Ni was mechanically alloyed in a high energy ball mill. Microstructure of the nanosized amorphous milled product in different stages of milling has been characterized by X- ray diffraction, scanning electron microscopy and differential thermal analysis. We found that time of mechanical alloying is more significant to convert all crystalline structure to the amorphous phase. Nanocrystalline phase was achieved as a result of the mechanical alloying process. The results also indicates that the phase transformation and the grain size occurs in these alloys are controlled by ball milling time