Global technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simulations. Six cases with varying rib step heights and pitch gaps, with Re numbers ranging from 10,000 to 25,000, were explored for various volume concentrations of hybrid nanofluids Al2O3-Cu/water (0.33%, 0.75%, 1%, and 2%). The simulation results showed that the presence of ribs enhanced the heat transfer in the passage. The Nusselt number increased when the solid volume fraction of “Al2O3-Cu/water” hybrid nanofluids and the Re number increased. The Nu number reached its maximum value at a 2 percent solid volume fraction for a Reynolds number of 25,000. The local pressure coefficient also improved as the Re number and volume concentration of “Al2O3-Cu/water” hybrid nanofluids increased. The creation of recirculation zones after and before each rib was observed in the velocity and temperature contours. A higher number of ribs was also shown to result in a larger number of recirculation zones, increasing the thermal performance.
The technical of Flame Thermal Spray had been used in producing a cermet
composite based on powders of stabilized zirconium oxide containing amount of
Yatteria oxide (ZrO2- 8Y2O3) reiforced by minerals powders of bonding material
(Ni-Cr- Al- Y) in different rates of additions (25, 35, 50) on stainless steel base type
(304) after preparing it by the way of Grit Blasting.
Before heat treatment, the coated cermet layers were characterized for porosity
and electric resistivity. All samples were heat treated in vacuum furnace at different
temperature and times. The physical tests had been operated after heat treatment
and gave best results especially porosity, which found to be reduced dramatically
and producing hig
Background: this study aimed to evaluate the effect of addition of hydroxyapatite micro filler in three concentrations (5%, 10%, 15%) on surface roughness, impact strength, flexural strength and hardness. Material and methods: One hundred sixty acrylic samples were used in this study,40 samples were used for each test(impact strength ,flexural strength ,hardness and surface roughness).The test group divided into four subgroups(n=10) for controlgroup,5%,10% ,15%H,A.concentration addition groups .Impact testing device, flexural strength testing device, shore hardness tester and profilometer device were used to measure the four tests examined in this study. Results: the results showed a significant increase in impact strength, hardness in all
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show MoreA comparative study was carried out on ecological and genetical adaptation of three Iraqi
freshwater snails, Physa acuta, Melanopsis buccinoidea and Melanoides tuberculata, in
respect to acute toxicity of heavy metals (Zn, Cd and Hg). Longevity are used as poisoning
tolerance criterion. LT 50 and LT 100 were determined for the studied snails at (0.5, 1, 5, and
10 ppm), for the three metals. Results indicated that Physa acuta had a higher tolerance than
Melanopsis buccinoidea and Melanoides tuberculata, which was the lower one. Previous
exposure to heavy metals in the original habitat was affecting on experimental tolerance and
no relationships of physical and chemical factors (total hardness, temperature, D. O. and
Thrust blocks and restraint joints are the two most popular methods of counteracting the thrust force that generated at pipe fittings (bends, Tee, wye, reducers, dead ends, etc…). Both systems perform the same function, which is to prevent the joints from separating from the pipes. The aim of the study is to review previous studies and scientific theories related to the study and design of thrust blocks and restraint joints to study the behavior of both systems under thrust force and to study the factors and variables that affect the behavior of these systems. The behavior of both systems must be studied because they cannot be abandoned, as each system has conditions whose use is more feasible, scientific, and economic
... Show MoreGroundwater is an important resource that can be used for various purposes. Various factors can change the chemistry of the GW, such as the chemical composition of an aquifer as well as the leaching of human waste into groundwater. The study area is a barren land covered by some sabkhas, in addition to some agricultural fields. The study aims to assess groundwater quality for drinking purposes using the Water Quality Index. The groundwater is chemically heterogeneous and has a wide quality range from very poor to excellent. Evaporation appears to be the controlling factor among the other shallow waters, while relatively deep water is related to rock-soil dominance. Rocks, land use and land cover have helped control the groundwater q
... Show MoreThe research was conducted between 2017 and 2019 at the College of Agricultural Engineering Sciences and Laboratory of Plant Tissue Culture for Postgraduate Studies at the University of Baghdad. One experiment used a totally random design. The experiment examined the effects of PEG (Polyethylene glycol) at concentrations of 0, 2, 4, 6, and 8% on the development of three sunflower types (Ishaqi-1, Aqmar, and AL-Haja) exposed to UV-C rays for 40 minutes as a result of the growing of the juvenile peduncle outside the live body. The aim of the study was to better comprehend the physiological and biochemical changes caused by water stress on the callus of several sunfl