The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The study's primary purpose is to explore an appropriate way of monitoring and assessing water depths using the satellite remote sensing technique of the Al Habbaniyah Lake in Iraq. This research studied the experience-conditions (thresholds) of different bands for multi-temporal satellite image data with different satellite image sensors (Landsat 5-TM, and EO1-ALI) for the same region, to recognize regions of water depths. The threshold values are taken that to separate the Al Habbaniyah Lake to the required depths (shallow, deep, and very deep), as a supervised method. A three-dimension feature space plot had used to represent these regions. The relationship of the mean values of the three separated water regions with all TM and A
... Show MoreLower neck pain is one of the problems facing all ages, especially the elderly, as it revolves around the causes of this pain from many diverse factors. The aim of the research is to use special intense exercise accompanied by intermittent electrical stimulation to get rid of lower neck pain among professors of the College of Science - University of Baghdad for ages. (40-60) years and to identify the extent of the effect. The research assumed the presence of statistically significant differences. The research sample represented professors at the University of Baghdad - College of Science who suffer from continuous pain for the period between (10/15/2023) and (1/15/) 2024) and their number is (5), The researchers used the experimenta
... Show MoreUsing sodium4-((4,5-diphenyl-imidazol-2-yl)diazenyl)-3-hydroxynaphthalene-1-sulfonate (SDPIHN) as a chromogenic reagent in presence of non-ionic surfactant (Triton x-100) to estimate the chromium(III) ion if the wavelength of this reagent 463 nm to form a dark greenish-brown complex in wavelength 586 nm at pH=10,the complex was stable for longer than 24 hours. Beer's low, molar absorptivity 0.244×104L.mol-1.cm-1, and Sandal's sensitivity 0.021 µg/cm2 are all observed in the concentration range 1-11 µg/mL. The limits of detection (LOD) and limit of quantification (LOQ), respectively, were 0.117 µg/mL and 0.385µg/mL. (mole ratio technique, job's method) were employed to
... Show MoreThis research is an attempt to develop exercise with weights to strengthen some of the striking muscles in the shoulder and arm and to develop the accuracy of the smash and rectum skills. The importance of this paper lies in the study of moments of force to achieve the ability to control muscular work and to explore the impact of physical and skill exercises with weights to develop moments of force for some muscles. The experimental method on a sample of players, selected according to the intentional method, including ( 9) advanced players representing Air Force Club participating in the Premier League for season 2011-2012. It is concluded that the exercises proposed have their effective impact on developing the variables of moments force f
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreDeep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec
... Show MoreThis paper performance for preparation and identification of six new complexes of a number of transition metals Cr (lII), Mn (I1), Fe (l), Co (II), Ni (I1), Cu (Il) with: N - (3,4,5-Trimethoxy phenyl-N - benzoyl Thiourea (TMPBT) as a bidentet ligand. The prepared complexes have been characterized, identified on the basis of elemental analysis (C.H.N), atomic absorption, molar conductivity, molar-ratio ,pH effect study, I. Rand UV spectra studies. The complexes have the structural formula ML2X3 for Cr (III), Fe (III), and ML2X2 for Mn (II), Ni (II), and MLX2 for Co (Il) , Cu (Il).
There are significant differences between the pre and post-tests in favor of the post-test in the tests) stroke volume (S.V), cardiac thrust (C.O.P), left ventricular volume, maximum oxygen consumption Vo2max), which indicates the effect of the proposed training approach.There are significant differences between the pre and post-tests in favor of the post-test in the achievement level test with air rifle shooting for young female shooters, which indicates the effect of the proposed training curriculum.There are no significant differences between the pre and post-tests in the tests (heart rate (HR) before exercise, heart rate (HR) after exercise, systolic blood pressure rate before exercise, systolic blood pressure rate after exercis
... Show More