The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The calibration of a low-speed wind tunnel (LSWT) test section had been made in the present work. The tunnel was designed and constructed at the Aerodynamics Lab. in the Mechanical Engineering Department/University of Baghdad. The test section design speed is 70 m/s. Frictional loses and uniformity of the flow inside the test section had been tested and calibrated based on the British standards for flow inside ducts and conduits. Pitot-static tube, boundary layer Pitot tube were the main instruments which were used in the present work to measure the flow characteristics with emphasize on the velocity uniformity and boundary layer growth along the walls of the test section. It is found that the maximum calibrated velocity for empty test sect
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeab
... Show MoreNaber and toning in the modern Arab poetry Mahmoud Darwish, a model
When we talk about the foresight in films, it is necessary to talk about dreams because foresight represents one of its distinct types. The Precognitive vision has become a possible material in dealing with as subjects in the film industry that adopt these ideas with their philosophical and scientific orientations, because they represent the imagination that predictors are specialized with. It can be invested through the introduction of a vision of another kind to achieve its goals and ambitions in the film industry and in particular the huge institutions of production as in Hollywood. The cinema works in the light of those concepts of production which found the prognostic dream (the foresight) as a distinctive genre in its films,
Th
The aim of this paper is to identify Nano-particles that have been used in diagnosis and treatment of leishmaniasis in Iraq. All experiments conducted in this field were based on the following nanoparticles: gold nanoparticles, silver nanoparticles, zinc nanoparticles, and sodium chloride nanoparticles. Most of these experiments were reviewed in terms of differences in the concentrations of nanoparticles and the method that was used in the experiments whether it was in vivo or in vitro. These particles used in most experiments succeeded in inhibiting the growth of Leishmania parasites.
HTH Ali Tarik Abdulwahid , Ahmed Dheyaa Al-Obaidi , Mustafa Najah Al-Obaidi, eNeurologicalSci, 2023