The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The Jeribe Formation, the Jambour oil field, is the major carbonate reservoir from the tertiary reservoirs of the Jambour field in northern Iraq, including faults. Engineers have difficulty organizing carbonate reserves since they are commonly tight and heterogeneous. This research presents a geological model of the Jeribe reservoir based on its facies and reservoir characterization data (Permeability, Porosity, Water Saturation, and Net to Gross). This research studied four wells. The geological model was constructed with the Petrel 2020.3 software. The structural maps were developed using a structural contour map of the top of the Jeribe Formation. A pillar grid model with horizons and layering was designed for each zone. Followin
... Show MoreThe purpose of this study is to underline the progression and development of research regarding oxygen-containing heterocycles as well as the contribution that some oxygen-containing heterocycles have made as anticancer medicines. A series of publications about the antitumor effects of derivatives of heterocyclic compounds containing an oxygen atom, such as furan, benzofuran, oxazole, benzoxazole, and oxadiazole, were evaluated, and their anticancer activities showed encouraging results when compared to those of established standard treatments.
The mucilage from the seeds of Lallemantia royleana family Labiatae was extracted and subjected to preformulation study for evaluation of its suitability for use as suspending agent. Furosemide suspensions were prepared using (1.5% w/v) of the extracted Lallemantia royleana mucilage, (1.5% w/v) chitosan and (0.35% w/v) xanthan gum. The mucilage was white in color and the average yield of dried mucilage obtained from L.royleana nutlets was 14 % w/w of the seeds used. It is sparingly soluble in water but swells in contact with it, giving a highly viscous solution. It is slightly acidic to neutral. It was found that the extracted natural mucilage of Lallemantia royleana exhibited a higher viscosity profil
... Show MoreIt is certain that marriage has the favor of the continuity of human kind since the Prophet Adam till now. But this important event is threatened by some justifications which lead to its delay or abandonment. In the West, sexual relations, illegal friendships, and disrespect of marriage sacredness lead to this delay. While the reasons behind the delay of marriage in the Arab world refer to high dowries, women go out to work, and the religious and scientific ignorance of the need and importance of marriage. The problem also differs according to the difference between the rural and urban regions. On one hand, we find that early marriage is a necessity in the rural regions; on the other hand, the delay of marriage is a clear and nat
... Show MoreThe study focuses on the causes of minaret tilting as well as possible solutions. The major aims of this study are to improve knowledge of historical tall structure stability and rehabilitation operations using the finite element approach to model the soil and minaret (PLAXIS 3D 2020), a platform for computational soil investigation and modeling. The numerical analysis aims to identify stresses, settlement, and deformation of the soil and minaret in various scenarios like Earthquakes, explosions, and winds. The simulation of the problem by the PLAXIS 3D revealed that the greatest lateral displacement computed at the Top Minaret is 5.5 cm, and the greatest vertical movement is calculated to be 3 cm. Seismic settlement is the effect of ear
... Show MorePKE Sharquie MD, PDPAA Noaimi MD, DDV, FDSM Al-Ogaily MD, IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 2015
In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
This paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used. Experimental results shows LPG-PCA method
... Show More
