The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.
The research is trying to identify the investment portfolio risks of the insurance company and their impact, on the Profitability ratios of the company, and whether the company's scientific methods followed in the measurement of these risks, and conducted research in the National Insurance Company. by relying on its annual budget as well as the annual reports, The search dealing with these data in theoretical and practical major premise to statistically significant between to investment portfolio risk and financial performance correlation and reach a set of conclusions and recommendations which are the following.
investments include many ri
... Show MoreAbstract
The research’s goal lies in demonstrating the impact of the Federal Financial Supervision Endowment through the process of auditing the performance of the entities subject to its audit as to improve the performance of these entities, especially if the performance audit method is one of the newly applied methods that are compatible with the standards issued by the International Organization of Financial Supervision and Accounting Institutions which is the method of auditing performance according to the performance evaluation guide for programs and policies issued by the Federal Office of Financial Supervision.
T
... Show MoreThis study was aimed to explore the impact of social concepts about tribe, clan and women, on internal audit performance. These concepts are considered to be components of the organizational culture and performance of internal audit practice, with respect to the individual and collective performance within the institution. The study, furthermore, was intended to investigate and understand the role of the organizational culture of the tribal, clan and women components with regard to their role in society, in Qatar.
To achieve these objectives, the researcher followed the descriptive analytical approach, using a questionnaire directed to experts and staff working in the banking sector, with the view to test
... Show MoreThe research aims to clarify the role that psychological ownership, through its dimensions, plays in deterring the effects of toxic leadership, through its dimensions, in the Ministry of Industry and Minerals. The research started with a basic problem represented by the following question: "Using psychological ownership and its application in deterring the negative effects of toxic leadership." The research used the descriptive-analytical method. The sample was randomly selected from workers in some selected companies affiliated with the Ministry of Industry and Minerals in Baghdad, and the sample size reached 124 individuals. One of the most important results is that there is an effect of the psychological ownership variable, based on the
... Show MoreIs the subject of the financial structure of the most important topics for which she received the interests of scientific research in the field of financial management , as it emerged several theories about choosing a financial structure appropriate for the facility and behavior change funding them , and in spite of that there is no agreement on a specific theory answer various questions in this regard , and a special issue of the financial structure optimization.
The objective of the research was to identify the most important theories of the structure of modern financial theory has been to focus on the capture of financial firms in two different stages of their life cycle , so-called growth and ma
... Show MoreThe research aims to identify the theoretical foundations for measuring and analyzing quality costs and continuous improvement, as well as measuring and analyzing quality costs for the Directorate of Electricity Supply / Middle Euphrates and continuous improvement of the distribution of electrical energy,The problem was represented by the high costs of failure and waste in electrical energy result to the excesses on the network and the missing (lost) energy,Thus, measuring and analyzing quality costs for the distribution of electrical energy and identifying continuous improvement leads to a reduction in missing and an increase in sales, as the research reached many conclusions, the most important of which is the high percentage o
... Show MoreSegmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and ge
... Show MoreSegmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.