Preferred Language
Articles
/
DkK4vJoBMeyNPGM3ds8C
Towards Accurate SDG Research Categorization: A Hybrid Deep Learning Approach Using Scopus Metadata
...Show More Authors

The complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Transformers (BERT), and FastText embeddings follows our approach, which comprises exhaustive preprocessing operations including stemming, stopword deletion, and ways to address class imbalance. Training and evaluation of the hybrid BiLSTM-CNN model on several benchmark datasets, including SDG-labeled corpora and relevant external datasets like GoEmotion and Ohsumed, help provide a complete assessment of the model’s generalizability. Moreover, this study utilizes zero-shot prompt-based categorization using GPT-3.5/4 and Flan-T5, thereby providing a comprehensive benchmark against current approaches and doing comparative tests using leading models such as Robustly Optimized BERT Pretraining Approach (RoBERTa) and Decoding-enhanced BERT with Disentangled Attention (DeBERTa). Experimental results show that the proposed hybrid model achieves competitive performance due to contextual embeddings, which greatly improve classification accuracy. The study explains model decision processes and improves openness using interpretability techniques, including SHapley Additive exPlanations (SHAP) analysis and attention visualization. These results emphasize the need to incorporate rapid engineering techniques alongside deep learning architectures for effective and interpretable SDG text categorization. With possible effects on more general uses in policy analysis and scientific literature mining, this work offers a scalable and transparent solution for automating the evaluation of SDG research.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Computers, Materials & Continua
A New Hybrid Feature Selection Method Using T-test and Fitness Function
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Artificial Intelligence For Covid-19
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

View Publication
Scopus (33)
Crossref (27)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
View Publication Preview PDF
Scopus (51)
Crossref (44)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Networks And Systems
Using Machine Learning to Control Congestion in SDN: A Review
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach
...Show More Authors

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
View Publication
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Computers & Electrical Engineering
Utilizing different types of deep learning models for classification of series arc in photovoltaics systems
...Show More Authors

View Publication
Crossref (14)
Crossref
Publication Date
Tue Mar 21 2023
Journal Name
International Journal Of Emerging Technologies In Learning (ijet)
Impact of Deep Learning Strategy in Mathematics Achievement and Practical Intelligence among High School Students
...Show More Authors

— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen

... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Crossref
Publication Date
Fri Jun 08 2018
Journal Name
Advances In Intelligent Systems And Computing
Improve Memory for Alzheimer Patient by Employing Mind Wave on Virtual Reality with Deep Learning
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Hybrid Cipher System using Neural Network
...Show More Authors

The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Journal Of The College Of Education For Women
The Attitude of the University of Baghdad Students towards the Mixed and Single-Sex Learning
...Show More Authors

The study aims at finding out:
1. The students' attitude towards the mixed learning at the university.
2. The statistically significant differences in attitude towards the mixed learning at the university according to the specialization variable.
3. The statistically significant differences in attitude towards the mixed learning at the university according to the gender variable.
The researcher has constructed a scale for measuring the students' attitude towards the mixed learning at the university.
After assuring its validity and reliability, the scale has been given to a sample of (100) students. The sample is selected randomly from (4) colleges of the university of Baghdad, (2) for scientific specialization and (2)for h

... Show More
View Publication Preview PDF