The current investigation examines the combined impacts of ultrasonic radiation and hydrogen donors on the viscosity of heavy crude oil. The impact of exposure time, power, duty cycle, and temperature on the viscosity of Iraqi heavy crude oil with 20.32 API was studied. Also, the viscosity of the oil samples, which were mixed with a hydrogen donor (decalin) and subjected to ultrasonic treatment under optimal conditions, was examined to evaluate the combined impact of ultrasonic radiation and hydrogen donor on the viscosity of crude oil. The viscosity experienced a decrease of 52.34% at 2 min of irradiation, 360 W ultrasonic power, 0.8 duty cycle, 35 ⁰C, and 8vol% decalin. To validate the outcomes of the experiments, asphaltene content, sulfur content, API gravity, and distillation tests were conducted on both the original and final samples (under optimal conditions). The concentrations of asphaltene and sulfur exhibited a drop of 37.51% and 35.04%, respectively. The results show that cavitation, a heat phenomenon, and the mechanical impact of ultrasound may help break up long carbon chains and reduce the size of asphaltene aggregates, which causes the crude oil's viscosity to drop. Moreover, the findings demonstrated that the simultaneous application of ultrasound and hydrogen donor yielded the most significant decrease in oil viscosity compared with untreated crude oil or treated just with ultrasonic waves.
Ceramics type Yttrium oxide with Silicon carbide. were selected to investigate its sintered density, microstructure and electrical properties, after adding V2O5, of 100 nm grain size. Different weight percentages ranging from (0.01,0.02,0.03 and 0.04) were used. Dry milling applied for twelve hours. The pelletized samples were sintered at atmospheric of static air and at sintering temperature 1400 ˚C, for three hours. The crustal structure test shoes the phase which is yttrium silicon carbide Scanning electron microscopy, scan sintered microstructure. Samples after sintering were electrically investigated by measuring its capacitance, dielectric constant and their results showed increasing after added V2O5 particles at the combinat
... Show More
Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
Asphaltene is a component class that may precipitate from petroleum as a highly viscous and sticky material that is likely to cause deposition problems in a reservoir, in production well, transportation, and in process plants. It is more important to locate the asphaltene precipitation conditions (precipitation pressure and temperature) before the occurring problem of asphaltene deposition to prevent it and eliminate the burden of high treatment costs of this problem if it happens. There are different models which are used in this flow assurance problem (asphaltene precipitation and deposition problem) and these models depend on experimental testing of asphaltene properties. In this study, the used model was equation of
... Show MoreThe study includs,effect of concentration of Lead 0.2 ,0.3 , 0.5, 5 , 10 mg/L and Zinc 0.1,0.5 , 2 , 4 , 8 mg/L lonely or to gether on growth green algae( Scenedesmus quadricauda var . longispina) according to the total qauntity for the cells and the adsorption of the algae to the zn,pb concentration .growth curve and dubbling time growth were calculated with or without there heavy metals . Results shows that there are significant differences (P<0.01) for growth curve and the control. (7.5201 cell /h)and with dubbling times (9.87 cell/h). The heavy metals(Pb, Zn). shows antagonistic effect when both used in media.
The present study investigated Haematological changes in Mesopotamichthys sharpeyi, as well as determination genotoxic effects of cadmium chloride on bunni fish by using 120 fingerlings, fish were distributed randomly into four treatments in addition to control group. Fish in first group treated (T1) with cadmium 0.093mg/L with changing water and added cadmium continuously, fish in the second group treated (T2) with cadmium 0.093mg/L with changing water without adding cadmium, third treatment (T3) with cadmium 0.046mg/L with changing water and adding cadmium continuously, and fourth treatment (T4) with cadmium 0.046mg/L with changing water without adding cadmium. Results of blood picture in T1 and T3 showed a significant reduction in red bl
... Show MoreThe results of studying the effects of M. anisopiliae spores on mosquito, C. quinquefasciatus showed a biological effects represented by immature mortality. The mortality increased proportionally with the concentrations of fungal spores, which reached (at high concentration 2×1011 spores / ml), to 86.6, 56.6% in first and late instar larvae, respectively. An important to mention that cumulative death rate was significantly associated with the time, which reached to 56% at 7 day after treatment. In addition, M. anisopiliae had a long period permanence in aquatic habitats; in which the residual effects stay 30 days in aquatic habitats after treatment at laboratory conditions. Interestingly, the long period exposure of fungal spores (30 minut
... Show MoreThis research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Stro
... Show More