This study explores the role of nanomaterials in the performance of asphalt binders and mixtures. Two commonly available nanomaterials, i.e., nanosilica (NS) and nanoalumina (NA), were used at contents of 0%, 2%, 4%, 6%, and 8% by weight of asphalt binder. A set of experiments was carried out at the binder level to investigate properties such as penetration, softening point, aging-related mass loss, nanomaterial dispersion (storage stability), and workability (rotational viscosity). In addition, the suitability of NS and NS was also assessed through the testing of nanomodified asphalt mixtures, which focused on Marshall properties, the resilient modulus, moisture susceptibility, permanent deformation, and fatigue resistance. The findings indicate that nanomaterials impart a stiffening effect and enhance binder properties while maintaining storage stability and aging characteristics within limits. Their addition also improved the asphalt mixture stability and volumetric characteristics, especially at higher contents. The resilient modulus (Mr) evaluations highlight the ability of NS and NA to sustain repetitive loading as well as enhance recovery from deformation, with significant increases of 28.7% and 16.1% observed at 8% NS and NA contents, respectively, compared with those of the control mixture. Although both nanomaterials exhibit improved resistance against moisture damage, permanent deformation, and fatigue distress, the effect of NS was more promising than that of NA. Statistical analysis confirmed the importance of selecting these nanomaterials and contents for producing asphalt mixtures. On the basis of the performance testing, 4% NS and 6% NA were the optimal contents for achieving satisfactory performance.
This work targeted studying organogel as a potential floating system. Organgel has an excellent viscoelastic properties, floating system posses a depot property. Different formulations of 12-hydroxyoctadecanoic acid (HOA) in sesame oil were gelled and selecting F1, F3 and F5 HOA organogels for various examinations: tabletop rheology, optical microscopy, and oscillatory rheology studies. Also, the floating properties studies were conducted at in vitro and in-vivo levels. Lastly, the in-vitro release study using cinnarizine (CN) was to investigate the organogel depot property. Based on the results, the selected concentrations of HOA in sesame oil organogels showed temperature transitions fr
... Show MoreThe research was conducted between 2017 and 2019 at the College of Agricultural Engineering Sciences and Laboratory of Plant Tissue Culture for Postgraduate Studies at the University of Baghdad. One experiment used a totally random design. The experiment examined the effects of PEG (Polyethylene glycol) at concentrations of 0, 2, 4, 6, and 8% on the development of three sunflower types (Ishaqi-1, Aqmar, and AL-Haja) exposed to UV-C rays for 40 minutes as a result of the growing of the juvenile peduncle outside the live body. The aim of the study was to better comprehend the physiological and biochemical changes caused by water stress on the callus of several sunfl
Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentrati
... Show Morewind load coefficient
In the present time, radioactive contamination is considered one of the most dangerous types of environmental pollution. It usually takes place because of a leakage of radioactive materials to one of the environment natural components, such as, water, air, and soil. Iraq is considered one of the most contaminated environments in the world; this is closely associated with the wars Iraq had suffered from; especially, in 1991 and 2003. Considering the importance of the radioactive contamination and its different health impacts on the population, the current paper is interested in studying this type of environmental contamination and its impact on the birth defects depending on the data available in the annual reports issued by the Iraqi min
... Show MoreAleppo bentonite was investigated to remove ciprofloxacin hydrochloride from aqueous solution. Batch adsorption experiments were conducted to study the several factors affecting the removal process, including contact time, pH of solution, bentonite dosage, ion strength, and temperature. The optimum contact time, pH of solution and bentonite dosage were determined to be 60 minutes, 6 and 0.15 g/50 ml, respectively. The bentonite efficiency in removing CIP decreased from 89.9% to 53.21% with increasing Ionic strength from 0 to 500mM, and it increased from 89% to 96.9% when the temperature increased from 298 to 318 K. Kinetic studies showed that the pseudo second-order model was the best in describing the adsorption sys
... Show MoreSheikh Hanafi was born in one of the popular shops of Baghdad with interlocking social relations, and had a profound impact this camp where his talents in the first Venco loving to Mahalah and Baghdad and was born with this development since his days looked forward to the folklore and folk. In the middle of his youth, including authoring loves the heritage of folk legacies began in motion, from Baghdad, books, articles, research has brought him wide acclaim were not possible without the seriousness and diligence, independence and self-Asamath that mushroom on them
The trip was one of his tools in the scientific fame has gone to many Eastern and Asian countries and visited religious and literary institutes and delivered the lectures an
In this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule –
... Show More