Femtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying phase shift. The output spectral width also changed with the fiber length at a given peak power.
Laser beam has been widely used to improve the mechanical properties of the metals. It used for cutting, drilling, hardening, welding……etc. The use of Laser beam has many features in accuracy and speeding in work, also in the treatment of metals locally, and in the places that is hard to reach by traditional ways. In this research a surface treatment was done to medium carbon steel (0.4%C) which is common kind of steel that is used in industry. Pulsing Neodymium -YAG Laser has been used and 1.06 micrometer wave length and 5 msec and the distance is about 30 centimeter between the exit area of the Laser beam from the system and the piece that treated . We are going to check the fatigue resistance for samples that is
... Show MoreModern emerged technologies impose development and fabrication of miniatur-ized parts and devices in the micro- and nano-scale. Producing micro- and nano-featured structures requires nonconventional machining processes where con-ventional machining processes such as grinding, milling and eroding have failed. New emerging processes, such laser machining processes, are still fraught with almost invincible processes. Micro-/nano-machining are the pro-cesses of producing parts, microsystems or features at a scale of a few microm-eters and less than one hundred nanometers, respectively. Precise cutting and clean material removal accompanied with a negligible heat affected zone (HAZ), which are usually the characteristics of laser ablation, have
... Show MoreThis study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced
... Show MoreIn this work the design and construction of optical pumping system was presented. The parameters of the pumping source to obtain discharge current density sufficient to shift the flash lamp spectrum towards uv portion of spectrum were measured.The current density was supplied to the flash lamp must be greater than 4000Amp./cm2 to obtain the spectral range wavelength lies between 0.2 and 0.35?m. The current density was obtained by a capacitor 50?F, at 7KV discharge voltage. The applied electrical energy to the flash lamp was more than 1200 J, and the current density was around 5000 Amp./cm2.The electrical parameters of the flash lamp were calculated. The impedance parameters(K0) from the voltage and the peak current pulse was measured in ran
... Show MoreChalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .
Striae distensae SD or stretch mark are frequent skin lesion that cause considerable aesthetic concern. The 1064nm long pulsed Nd:YAG Laser has been used to promote an increase in dermal collagen and is known to be a Laser that has a high affinity to vascular chromphores. Also by using fractional CO2 Laser 10600nm as an effective modality in treatment of striae distensae SD. It works to stimulate fibroblast and enhance Collagen formation, which is important for newly generated skin tissue.
Objectives: This study aims to verify the efficacy of long pulsed Nd: YAG Laser (1064nm) in the treatment of immature striae distensae (SD) and the efficacy of C02 fractional Laser (10600nm) in treatment o
... Show MoreHemorrhoids are one of the most common surgical conditions. The hemorrhoid may cause symptoms that are: bleeding, pain, prolapse, itching, spoilage of feces, and psychologic discomfort. There are many methods for treatment of hemorrhoid like, medical therapy, rubber band ligation, electerocoagulation, stapled hemorrhoidpexy, photocoagulation, sclerothereapy, doppler guided artery ligation, Cryosurgery, and surgery. All methods for treatment of hemorrhoids have advantages, disadvantages, and limitations. Conventional haemorrhoidectomy was the traditional operation for the treatment of hemorrhoids. But recently other modalities of treatment had been used as an alternative operations including CO2 laser haemorrhoidectomy. This work aims to
... Show MoreIn this work the design and construction of a flash photolysis pulsed HCl laser was presented. The parameters of the pumping source and discharge current density was obtained, which sufficient to shift the flash lamp spectrum towards uv portion of spectrum. The maximum pulse laser energy parameters was measured. Total pressure and ratio of active gases to optimized the output pulse energy were measured , where at 125 mbar of total pressure and 1:7:14 Cl2:H2: He ratio, the laser energy was measured to be 200 mJ at pumping four flash lamps energy in the order of 6400J .The resonator consists of copper a near hemispherical mirror with the radius of curvature 3m coated by gold and reflectivity 98%,the output coupler sapphire mirror of
... Show More In this work a Nd:YVO4 thin disc laser setup is designed and fabricated. The disk laser system
is designed to be compact. The laser crystal was pumped by a 808 nm diode laser. The effect of input
current and pulse frequency on the output energy at pulse operation mode, and the effect of the input
current on the output power at CW mode operation are tested. At the pulsed mode, the output energy
increased linearly with the input current and decreased with pulse frequency. The threshold current
increased with increasing pulse frequency increasing. The maximum output energy from the thin disc
laser was 0.98 μJ at 1.3 kHz frequency, with 0.49A. A minimum threshold current for CW mode of
operation. The maximum outpu
The purpose of my thesis is to prepare four new ligands (L1-L4) that have been used to prepare a series of metal complexes by reacting them with metal ions: M=(Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) Where succinyl chloride was used as a raw material for the preparation of bi-dented ligands (L1-L4) by reacting it with potassium thiocyanate as a first step and then reacting with (2-aminobenzothiazole, Benzylamine, 4-aminoantipyrine, Sulfamethoxazole) respectively as a second step with the use of dry acetone as a solvent, the chemical formula of the four ligands prepared in succession: N1,N4-bis(benzo[d]thiazol-2-ylcarbamothioyl)succinamide (L1) N1,N4-bis(benzylcarbamothioyl)succinami
... Show More