Femtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying phase shift. The output spectral width also changed with the fiber length at a given peak power.
Optical fiber technology is without a doubt one of the most significant phases of the communications revolution and is crucial to our daily lives. Using the free version (2022) of RP Fiber Calculator, the modal properties for optical fibers with core radii (1.5−7.5) μm, core index (1.44−1.48) and cladding index (1.43−1.47) have been determined at a wavelength of 1000 nm. When the fiber core’s radius is larger than its operating wavelength, multimode fibers can be created. The result is a single-mode fiber in all other cases. All of the calculated properties, it has been shown, increase with increasing core radius. The modes’ intensity profiles were displayed.
The analytical study of optical bistability is concerned in a fully
optimized laser Fabry-Perot system. The related phenomena of
switching dynamics and optimization procedure are also included.
From the steady state of optical bistability equation can plot the
incident intensity versus the round trip phase shift (φ) for different
values of dark mistuning
12
,
6
,
3
,
1.5
0 , o
or finesse (F= 1, 5, 20,
100). In order to obtain different optical bistable loops. The inputoutput
characteristic for a nonlinear Fabry-Perot etalon of a different
values of finesse (F) and using different initial detuning (φ0) are used
in this rese
In this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.
In this study, gold nanoparticle samples were prepared by the chemical reduction method (seed-growth) with 4 ratios (10, 12, 15 and 18) ml of seed, and the growth was stationary at 40 ml. The optical and structural properties of these samples were studied. The 18 ml seed sample showed the highest absorbance. The X- ray diffraction (XRD) patterns of these samples showed clear peaks at (38.25o, 44.5o, 64.4o, and 77.95o). The UV-visible showed that the absorbance of all the samples was in the same range as the standard AuNPs. The field emission-scanning electron microscope (FE-SEM) showed the shape of AuNPs as nanorods and the particle size between 30-50 nm. Rhodamine-610 (RhB) was prepared at 10<
... Show MoreSolid state blue laser source is a solid state laser include generation of IR laser light 1064 nm and companied with other wavelength 810 nm that invented from other active medium (Tm:ZBLAN) and non-linear crystal (CLBO) are used to generate fourth harmonic of the resultant wavelength 1874 nm that is blue laser light of 460nm. Several optical component have been designed by multilayer dielectric structure and anti reflection coating analysis. By using MATLAB soft ware, the simulation done and used the following non linear material (ZrO2, HfO2, MgO, SiO, Ta2O5 CaF2) and other linear material (ZnO, MgF2, GaAs, AlAs, BaF2, LiF, TiO2) as coating material. The result showed that as more quarter wave layers are added to the structure, the refl
... Show MorePulsed laser ablation in liquid (PLAL) technique can produce high purity nanoparticles, it is a top-down physical method based on the principle of dividing metal ion bulk precursors into metal atoms, this method was used in this work to synthesis cobalt nanoparticals (CoPNs) with the use of Nd: YAG laser with two wavelengths (355 nm) and (532 nm) at energies (500 mJ) and (600 mJ) respectively, with number of pulses (1000,1100, 1200, 1300, and 1400) for each wavelength. The properties of the prepared nanoparticles were studied by UV-Vis, XRD, SEM with EDX, AFM, and FTIR analysis and then its antibacterial activity was studied by applying it on two types of bacteria with gram-positive (Staphylococcus aureus, Streptococc
... Show MoreIn this study, mixing of zinc oxide (ZnO) nanoparticles with iron oxide(Fe2O3) at (0, 0.1, 0.3, 0.5 and 1)%wt., are deposited on glass substrates by pulsed laser deposition (PLD) technique for study characterization ZnO:Fe2O3 as solar cell electrode. The profound effect of mixed film on the structural and optical of ZnO: Fe2O3 thin films was observed. Meanwhile, the films have polycrystalline Hexagonal structures for ZnO, Rhombohedra and cubic structure for Fe2O3, and as indicated by the X-ray diffraction patterns of the films. The mean crystallite size of ZnO increase with increasing mixed ratio. The direct energy
... Show MoreThe main purpose of this work is the construction of an optical parametric amplifier (OPA) to generate a 629 nm pulsed laser. KTP nonlinear crystals were used for both parametric oscillation and amplification. A singly resonant parametric oscillator (OPO) is constructed to generate a signal of 1.54 μm and idler of 3.4 μm when the OPO system is pumped by 1.064 μm Q – switched Nd: YAG laser. The signal was then mixed with the pumping beam in OPA system to form the wanted wavelength. The obtained optical conversion efficiency was 60%.
The spectral characteristics and the nonlinear optical properties of the mixed donor (C-480) acceptor (Rh-6G) have been determined. The spectral characteristics are studied by recording their absorption and fluorescence spectra. The nonlinear optical properties were measured by z-scan technique, using Q-switched Nd: YAG laser with 1064 nm wavelength. The results showed that the optimum concentration of acceptor is responsible for increasing the absorption and the emission bandwidth of donor to full range and to 242 nm respectively by the energy transfer process, also the efficiency of the process was increased by increasing the donor and acceptor concentration. The obtained nonlinear properties results of the mixture C-480/ Rh-6G showed
... Show MoreThis work is a trial to ensure the absolute security in any quantum cryptography (QC) protocol via building an effective hardware for satisfying the single-photon must requirement by controlling the value of mean photon number. This was approximately achieved by building a driving circuit that provide very short pulses (≈ 10 ns) for laser diode -LD- with output power of (0.7-0.99mW) using the available electronic components in local markets. These short pulses enable getting faint laser pulses that were further attenuated to reach mean photon number equal to 0.08 or less.