The synthesis of a new tridentate Schiff-base ligand and its metal complexes are reported. The reaction of ((2R)-4-methyl-2-((S)-(phenylamino)(p-tolyl) methyl) cyclohexan-1-one) with semicarbazide in a 1: 1 mole ratio resulted in the formation of the title ligand ((E)-2-((2S)-4-methyl-2-((R)(phenylamino)(ptolyl) methyl) cyclohexylidene) hydrazine-1-carboxamide)((HL). The reaction of the ligand with Co (II) and Ni (II), Cu (II), Zn (II) and Cd (II) ions in a 1: 1 (L: M) mole ratio gave the title complexes. Physico-chemical techniques were implemented, as required, to characterise the ligand and complexes. These include; elemental microanalysis, 1H, 13C-NMR and mass spectra, FT-IR and electronic spectra, magnetic susceptibility and conductance. These analyses revealed the isolation of octahedral, square planar and tetrahedral geometry about Co (II) and Cu (II); Ni (II); and (Zn (II), Cd (II)) ions, respectively. Thermal stability (TGA-DSC) of the ligand and selected complexes were also investigated. The antimicrobial activity of the ligand and its complexes against several bacterial strains and fungi species were examined. The collected data indicated that the complexes are more active against several kinds of organisms, under survey, compared with the free ligand.
In this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examine
... Show MoreMicrowave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MorePreviously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the
... Show MoreThe research aims to investigate the effects of GMAW or MIG welding process on the mechanical properties of dissimilar aluminum alloys 2024-T351 and AA 6061- T651. A series of experimental techniques have been conducted to evaluate mechanical properties of the alloys, by carrying out hardness, tensile and bending tests for welded and un-welded specimens.
Metal inert gas (MIG) has been carried out on sheet metal using ER- 4043(AlSi5) as a filler metal and argon as shielded gas. The welded joints were tested by X-ray radiography and Faulty pieces were excluded.
Welding joints without defects are subjected to heat treatment including heating the joints in furnace to 170 °C for half an hour then air cooling to rel
... Show MoreThe aim of this research is to study the surface alteration characteristics and surface morphology of the superhydrophobic/hydrophobic nanocomposite coatings prepared by an electrospinning method to coat various materials such as glass and metal. This is considered as a low cost method of fabrication for polymer solutions of Polystyrene (PS), Polymethylmethacrylate (PMMA) and Silicone Rubber (RTV). Si were prepared in various wt% of composition for each solutions. Contact angle measurement, surface tension, viscosity, roughness tests were calculated for all specimens. SEM showed the morphology of the surfaces after coated. PS and PMMA showed superhydrophobic properties for metal substrate, while Si showed hydroph
... Show MoreThis paper displays a survey about the laboratory routine core analysis study on ten sandstone core samples taken from Zubair Reservoir/West Quarna Oil Field. The Petrophysical properties of rock as porosity, permeability, grain's size, roundness and sorting, type of mineral and volumes of shales inside the samples were tested by many apparatus in the Petroleum Technology Department/ University of Technology such as OFITE BLP-530 Gas Porosimeter, PERG-200TM Gas Permeameter and liquid Permeameter, GeoSpec2 apparatus (NMR method), Scanning Electron Microscopy (SEM) and OFITE Spectral Gamma Ray Logger apparatus. By comparing all the results of porosity and permeability measured by these instruments, it is clear a significant vari
... Show MoreN-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
The Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
In this research, the geotechnical properties of the soil profile in Hilla city within Babylon Governorate in the middle parts of Iraq are described. The geotechnical data at the specific sites were collected from some geotechnical investigation reports performed at some selected locations. This article is devoted to studying the distribution of soil properties (the physical and mechanical) in the horizontal and vertical directions. Moreover, a correlation between different physical and mechanical properties is performed. The correlation is executed using statistical analysis by Microsoft Excel Software (2016). From the regression results, it was found that the nature of the soil is c
Thin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals. Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.