Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector are improved by coating the MWCNTs films with a thin layer of a blend (polyaniline - polymethyl methacrylate) polymer with methylene blue dye. The coated MWCNTs films showed better performances, so this type of coating can be considered as a surface treatment of the detector film, which highly increased the responsivity and specific detectivity of the fabricated IR laser detector-based MWCNTs. The photocurrent response for the coated films was increased about 25 times than that for uncoated films. The results proved the role of the polymer in the enhancement of the performance of the IR photoconductive detectors. Keywords: Carbon nanotubes, Infrared detector, Polyaniline polymer, Polymethyl methacrylate polymer, Methyl Blue dye.
The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreEM International

This study is concerned with the effect of Deep Cryogenic Treatment (DCT) at liquid nitrogen temperature (-196 o C) on the mechanical properties and performance of low carbon steel (A858). The tests specimens were divided in to two groups, the first group was subjected to the conventional heat treatment of normalizing, and the second group was also normalized then subjected to (DCT). The results have shown that after (DCT), the Hardness, Tensile properties and the impact energy absorbed were all slightly increased. However the fatigue test showed some positive improvement in fatigue limit by 20(N/mm2 ), and the volume wear rates at different loads were significantly decreased after (DCT). The changes in microstructure due to (DCT) were c
... Show MoreThe present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techni
... Show MoreThe 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreThe adsorption isotherms and kinetic uptakes of Carbon Dioxide (CO2) on fabricated electrospun nonwoven activated carbon nanofiber sheets were investigated at two different temperatures, 308 K and 343 K, over a pressure range of 1 to 7 bar. The activated carbon nanofiber-based on polymer (PAN) precursor was fabricated via electrospinning technique followed by thermal treatment to obtain the carboneous nanofibers. The obtained data of CO2 adsorption isotherm was fitted to various models, including Langmuir, Freundlich, and Temkin. Based on correlation coefficients, the Langmuir isotherm model presented the best fitting with CO2 adsorption isotherms’ experimental data. Raising the equ
The research include a pulsed Nd: YAG Laser with (300µs) pulse duration in the TEM00 mode at (1.06µm) wavelength for energies between (0.5-3) J was employed to drill Brass material which is use in industrial applications. The process of drill was assisted by an electric field. This resulted in an increase in the hole aspect ratio by the value (45%) and decrease in the hole taper by the value (25%) of its value under ordinary drilling conditions using the same input energy.