The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the multiple discriminant model (MDM) and neural network model (NNM). Zublin trunk sewer in Baghdad city was selected as a case study. The deterioration model based on the NNDM provide the highest overall prediction efficiency which could be attributed to its inherent ability to model complex processes. The MDDM provided relatively low overall prediction efficiency, this may be due to the restrictive assumptions by this model. For the NNDM the confusion matrix gave overall prediction efficiency about 87.3% for model training and 70% for model validation, and the overall conclusion from these models may predict that Zublin trunk sewer is of a poor condition.
This paper set forth the spatial suitability of the informal settlement supposed to be distributed by the Iraqis government to poor people. The Iraqi government identified 9 locations of informal settlement in Baghdad city and acceptance it as a reality as a help for them to getting home. In this paper I discovered the suitability of those locations which one will be suitable more than others for living. The analysis process was applied using the GIS environment – spatial analysis. According to the results, It has been identified as the most important measures to identify which one of these areas suitable for development for housing by using some criteria (Distance from the city center, Proximity from transport routes, Proximity of high v
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreBackground: During pregnancy many physiological, anatomical and biochemical changes take place that affect almost all body systems. In the oral pregnant women have serious changes such as more sever dental caries. This study was conducted to measure dental caries severity and selected salivary variables (salivary flow rate, PH and viscosity)and to find the relation of dental caries with these salivary variables. Subjects, materials and methods: The study group consisted of 60 pregnant women that were divided into three equal groups according to trimester (20 pregnant women in each trimester).They were selected randomly from the Maternal and Child Health Care Centers in Baghdad city, the age range was 20-25 years. In addition to 20 unmarried
... Show More
Background: Osteoporosis is a systemic skeletal disorder that has an impact on general health, dental health and salivary composition. The mineralization of teeth happens simultaneously with that of the skeleton, but if mineral metabolism is disrupted, tooth failures will resemble those that affect bone tissue. Vitamin D plays a key role in bone and tooth mineralization.
Objective: to evaluate the impact of osteoporosis on teeth decay in relation to salivary vitamin D among menopause in Baghdad city.
Subjects and Methods: This study was cross sectional study. The study group consists of
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin
Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show MoreThe turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T
... Show MoreThe objective of this study was to investigate the prophylactic roles of human enteric derived Lactobacillus plantarum L1 (Ll) and Lactobacillus paracasei L2 (L2), on EHEC O157:H7 infection in rodent models (In vivo). The Lactobacillus suspensions (L1 and L2) were individually and orally administered to experimental rats at a daily two consecutives of 100 μl (108 CFU/ ml/rat) for up to two weeks. Thereafter, on the 8th day of experiment rats were orally challenged with one dose infection of EHEC (105 CFU/ml/rat). Animals mortality and illness symptoms have been monitored. There was no fatal EHEC infection in rats that had been pre‑colonized with the Lactobacillus strains, while most of EHEC infected rats were died (90%). The
... Show More