The deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the multiple discriminant model (MDM) and neural network model (NNM). Zublin trunk sewer in Baghdad city was selected as a case study. The deterioration model based on the NNDM provide the highest overall prediction efficiency which could be attributed to its inherent ability to model complex processes. The MDDM provided relatively low overall prediction efficiency, this may be due to the restrictive assumptions by this model. For the NNDM the confusion matrix gave overall prediction efficiency about 87.3% for model training and 70% for model validation, and the overall conclusion from these models may predict that Zublin trunk sewer is of a poor condition.
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreThe matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single l
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreAquatic Oligochaeta is an important group of Macroinvertebrates that has been very remarkable as bioindicators for assessing water pollution and determining its degree in water bodies. Hence, the idea of the current study aims at studying the impact of Baghdad effluents on the Tigris River by using oligochaetes community as bioindicators . For this purpose, four sites along the inside of Baghdad has been chosen. Site S1 has been located upstream, site S2 and S3 has been at midstream and site S4 at the downstream of the River.This investigation has used different types of biological indicators, including the percentage of oligochaeta within benthic invertebrates, which ranged from 49.2-51.28%. The highest percentage of the tubificid w
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreStatistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using Box-Jenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2).
Statistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using BoxJenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2)