In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-mean-square difference (PRD %), energy retained (Er) and Peak Signal to Noise Ratio (PSNR). Based on testing results, a comparison between the three techniques is presented. CR in the three techniques is the same and has the largest value in the 2nd level of 3-D. The hybrid technique has the highest PSNR values in the 1st and 2nd level of 3-D and has the lowest values of (PRD %). so, the 3-D 2-level hybrid is the best technique for image compression.
According to different types of democracy Indexes, hybrid regimes or those in the gray zone, make up the majority of regime transformations in the third wave of democracy. However, after nearly three decades, conceptual confusion about hybrid regimes persists and grows, while obstructing the accumulation of knowledge about the nature of hybrid regimes. This leads to significant political repercussions for democratization. This Paper attempts to provide a clearer view of different and overlapping concepts and classifications in this complex field, and sustain development in literature on democratic transformation. To achieve this, we followed an approach based on the classification of concepts and terms in three distinct categories, b
... Show MoreThe preferred route of drug administration is the oral route, but drugs with narrow absorption window in the gastrointestinal tract are still challenging. The ability to extend and monitor the gastric emptying time is a valuable tool for processes remaining in the stomach longer than other traditional dosage forms.
The purpose of this study was to formulate and evaluate gastroretentive superporous hydrogel (SPH) of carvedilol with view to improve its solubility and increase gastric residence time in order to get sustained release formulas via utilization of various kinds and concentrations of hydrophilic polymers then after, incorporate the best prepared formula into capsules.
Sixteenth formulae of SPH h
... Show MoreThe thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThis paper deals the prediction of the process of random spatial data of two properties, the first is called Primary variables and the second is called secondary variables , the method that were used in the prediction process for this type of data is technique Co-kriging , the method is usually used when the number of primary variables meant to predict for one of its elements is measured in a particular location a few (because of the cost or difficulty of obtaining them) compare with secondary variable which is the number of elements are available and highly correlated with primary variables, as was the&nbs
... Show MoreAbstract
Objectives: The main objective of this study is to find the influence level of nursing incivility on psychological well-being among nurses in southeastern Iraq.
Methods: In this descriptive correlational study, a convenience sample of 250 nurses working in three government hospitals in Missan province in the south of Iraq were surveyed using the nursing incivility scale (NIS) and Ryff's psychological well-being scale (PWB) from November 2021, to July 2022. A multivariate multiple regression analysis was done to analyze the multivariate effect of workplace incivility on the psychological well-being of nurses.
Results: The study results show a
... Show MoreA chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode
... Show More
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreInfluential, organized groups with natural antimicrobial and anti-biofilm broad-spectrum power exist within the food chain, like a hidden dormant mimic hygienic bio life nanobodies that can terminate multiple opportunistic disease entities owing multi-stress resistant forbidden recalcitrant power, such as Candida albicans. These wonderful dynamic forces created by ALLAH Almighty are the Mycophages or fungi-eating state of fungi foodborne phages, and this project was redirected to be a dare to leap from us towards the future. Multi-stress resistant C. albicans that are resistant to different antifungal agents with their genetic tolerance plasticity to thermal pasteurization decontamination module as well as to ultraviolet irradiation
... Show More