The current study suggested a thermal treatment as a necessary proactive step in improving the adsorption capacity of bio-waste for contaminants removal in wastewater. This approach was based on the experimental and histological investigation of biowaste pods shell. This investigation showed that these shells compose of parenchyma cells that store secondary metabolites compounds produced from cells were exhibited in present study. The results also reported that these compounds are extracted directly from the cells as soon as they are exposed to an aqueous solution, hampering their use as an adsorbent material. The increase in the weight of bio-waste adsorbent at unit liquid volume increases the production of secondary metabolites compounds under normal conditions. While thermal conditions accelerate the exit of these compounds from their storage places. After suggested thermal processing, the bio-waste was examined for azo dye removal under different operational conditions (adsorbent weight (1,0.1 g), contact time (24 and 48 hr), and temperature (30, 40, 50,and 60°C). In general, the experimental data showed a good improvement in adsorption potential. The results presented clearly that the increase in temperature has a positive effect on the performance of pollutant removal. The maximum adsorption capacity was 0.035833 mol/g at a temperature of 40°C, and 0.036417 mol/g at a temperature of 50°C. This behaviour may be counterproductive with high temperatures as a result of the release of more secondary metabolites compounds. For other operating conditions, increasing the concentration of the pollutant also improves the efficiency of the process, while this efficiency decreases with the increasing weight of the adsorbent material. For example, the removal capacity was (0.000275, 0.00675 mol/g) with 1 and 0.1 g of the adsorbent weight, respectively. Finally, the present study concluded that the adoption of thermal pre-treatment technology for bio-mass waste is a necessary step in improving the adsorption processes.
In this work, a test room was built in Baghdad city, with (2*1.5*1.5) m3 in dimensions, while the solar chimneys (SC) were designed with aspect ratio (ar) bigger than 12. Test room was supplied by many solar collectors; vertical single side of air pass with ar equals 25, and tilted 45o double side of air passes with ar equals 50 for each pass, both collectors consist of flat thermal energy storage box collector (TESB) that covered by transparent clear acrylic sheet, third type of collector is array of evacuated tubular collectors with thermosyphon in 45o instelled in the bottom of TESB of vertical SC. The TESB was
... Show MoreField experiment was conducted by using two fertilization systems (i.e.) biofertilizers (inoculation with Pseudomonas putida and with Azotobacter chroococcum and non - inoculation) and chemical fertilization (100%, 50% and 25% of recommended by Ministry of Agriculture) to study the influence of these system and interaction on water and grain yield productivity, some growth phytohorones and number of bacterial cells in soil rizosphere of root of wheat crop under water scarcity. The result showed that the integrate fertilization (inoculation with Pseudomonas putida and Azotobacter chroococcum bacterial + 50% of the recommended chemical fertilizer) recorded 5.70 and 5.55 t ha-1, respectively with reducing the chemical fertilizer app
... Show MoreEffluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreThe present work aims to study the removal of dyes from wastewater by reverse osmosis process. Two dyes were used direct blue 6, and direct yellow. Experiments were performed with feed concentration (75 – 450 ppm), operation temperature (30 – 50 oC) and time (0.2 – 2.0 hr). The membrane used is thin film composite membrane (TFC). It was found that modal permeate concentration decreases with increasing feed concentration and time operating, while permeate concentration increases with increasing feed temperature. Also it was found that product rate increase with increasing temperature, but it decrease with increasing feed concentration and time. The concentration of reject solution showed an increase with increasing feed concentratio
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreIn this study, polymeric coating was developed by incorporating nano graphene in the polymer blend with applications to oil storage tanks. The oil storage tanks samples were brought from the oil Pipeline Company / Doura refinery in Baghdad. The coating polymer was formed with a blend (epoxy resin and repcoat ZR). The proportion of mixing the mixture was 3:1:1 epoxy resin 21.06 gm: repcoat ZR 10.53 gm: hardener 10.53 gm. The blend/graphene was prepared using in stui-polymerization method with different weight percentage 1, 3, 5, and 7 wt % added to blend. The resulting solution was put in a glass tube on a magnetic stirrer for one hour at a temperature of 40 °C. The result of contact angle and wate
... Show More
Water pollution is one of the global challenges that the society must address in the 21st century aiming to improve the water quality, reduce human pollutants and ecosystem health impacts. In phytotoxicity test, the plant of Iresine herbstii was exposed to remove nickel from simulated wastewater using two different ratios (mass of plant to the mass of nickel) (,Rp/Ni) for 21 days with sub-surface batch system. During the exposure period, the removal of Ni concentrations (2, 5 and 10 mg/L) for two mass ratio (2,800 and 34,000) were (83.6%, 77.2%, 78.0%) and (86.8%, 97% and 95.6%), respectively. final result of the rate was found that the highest removal occurred, 97%, at a mass ratio of 34,000 and
... Show MoreBackground: Whey protein is the green-yellow colored, liquid portion of the milk, and it is also called the cheese serum, it is obtained after the separation of curd, during the coagulation of the milk. It contains a considerable amount of α-helix pattern with an evenly distributed hydrophobic and hydrophilic as well as basic and acidic amino acids along with their polypeptide chain. The major whey protein constituents include β-lactoglobulin (β-LG),α-lactalbumin (α-LA), immunoglobulins (IG), bovine serum albumin (BSA), bovine lactoperoxidase (LP), bovine lactoferrin (BLF) and minor amounts of a glycol macro peptide (GMP). Osseointegration can be defined as a process that is immune driven which leads to the formatio
... Show MoreMany nations are seeing an increase in water pollution from dairy and cheese production due to the high organic and fat content in their waste products and the high temperature of their waste products, which elevates the water temperature and causes loss to ecosystem components. Reusing industrial wastewater that has been treated to guarantee no harm has been done to the environment is being hampered by a lack of water. This study compares the presence and absence of mixing in the anaerobic biological treatment of liquid waste for the cheese industry. To decrease heat exchange with the external environment, cube-shaped anaerobic reactors with dimensions of (30 x 30 x 30) cm and thick glass (10 mm) were utilized in this investigation
... Show MoreIn addition to the primary treatment, biological treatment is used to reduce inorganic and organic components in the wastewater. The separation of biomass from treated wastewater is usually important to meet the effluent disposal requirements, so the MBBR system has been one of the most important modern technologies that use plastic tankers to transport biomass with wastewater, which works in pure biofilm, at low concentrations of suspended solids. However, biological treatment has been developed using the active sludge mixing process with MBBR. Turbo4bio was established as a sustainable and cost-effective solution for wastewater treatment plants in the early 1990s and ran on minimal sludge, and is easy to maintain. This
... Show More