The petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir unit. Additionally, Archie's equation is applied to calculate fluid saturation using resistivity data. The reservoir water saturation in the uninvaded zone is calculated using Archie's equation, which determines the most essential element utilized in log evaluation. Finally, the permeability was measured using a flow zone indicator. The results indicate that the limestone and shale that the cuttings description report enhanced comprise most of the Sa'di reservoir. At the HF-316 and HF-21 wells, the core porosity was verified. In an uninvaded zone, the Archie equation offers the best estimation. Three equations were derived from the core data's porosity-permeability connection using a cross-plot of the reservoir quality index and normalized porosity index. According to the general interpretation, zones B1, B2, and B3 contain the most hydrocarbons; however, the B2 zone, the best layer in the Sa'di reservoir, has the highest hydrocarbon concentration. This is close to previous studies and field results. Finally, Sa'di A is formed mainly of mud lime and contains no hydrocarbons. As a result, Sa'di A was separated into A1 and A2 based on the percentage of shale difference.
The present research investigates joints welding of 304L austenitic stainless steel using metal inert gas (MIG) welding method. The research explores the effect of process parameters (arc voltage, wire feed rate, and electrode wire diameter) on the mechanical properties of stainless steel. The above variables are varied respectively with 18.5, 19, 19.5 V, 116, 127, 137 mm/s, and 0.8, 1, 1.2 mm, with E308L as a filler electrode. The design matrix of the experiments was determined using the design of experiment (DOE) program Minitab 17 based on the levels of input elements used. The Taguchi orthogonal matrix methodology (Taguchi) technique was used to develop some empirical analysis for the maximum tensile strength and proper surface
... Show MoreIn this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreThe optical properties for the components CuIn(SexTe1-x)2 thin films with both values of selenium content (x) [0.4 and 0.6] are studied. The films have been prepared by the vacuum thermal evaporation method with thickness of (250±5nm) on glass substrates. From the transmittance and absorbance spectra within the range of wavelength (400-900)nm, we determined the forbidden optical energy gap (Egopt) and the constant (B). From the studyingthe relation between absorption coefficient (α) photon energy, we determined the tails width inside the energy gap.
The results showed that the optical transition is direct; we also found that the optical energy gap increases with annealing temperature and selenium content (x). However, the width of l
Stone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity t
... Show MoreBackground: Impression materials, impression trays, and poured stone cast have been said to be the main source of cross infection between patients and dentists. However, it was observed that disinfection of the impression is not performed systematically in routine dental practice. Disinfection of alginates either by immersion or spray technique was found to cause dimensional inaccuracies, although with proper disinfection of alginates there were small dimensional changes. A variety of fluoride releasing products designed for topical use is currently available. Following their use, varied amount of fluoride is systemically absorbed depending on the fluoride concentration and the manner of its use. The objective of this study was to evaluate
... Show More