The petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir unit. Additionally, Archie's equation is applied to calculate fluid saturation using resistivity data. The reservoir water saturation in the uninvaded zone is calculated using Archie's equation, which determines the most essential element utilized in log evaluation. Finally, the permeability was measured using a flow zone indicator. The results indicate that the limestone and shale that the cuttings description report enhanced comprise most of the Sa'di reservoir. At the HF-316 and HF-21 wells, the core porosity was verified. In an uninvaded zone, the Archie equation offers the best estimation. Three equations were derived from the core data's porosity-permeability connection using a cross-plot of the reservoir quality index and normalized porosity index. According to the general interpretation, zones B1, B2, and B3 contain the most hydrocarbons; however, the B2 zone, the best layer in the Sa'di reservoir, has the highest hydrocarbon concentration. This is close to previous studies and field results. Finally, Sa'di A is formed mainly of mud lime and contains no hydrocarbons. As a result, Sa'di A was separated into A1 and A2 based on the percentage of shale difference.
The faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreKE Sharquie, AA Noaimi, MS Abass, American Journal of Dermatology and Venereology, 2019 - Cited by 4
The permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
In this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule –
... Show Morewind load coefficient
Well integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with
... Show MoreWell integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with the
... Show MoreThe solution gas-oil ratio is an important measurement in reservoir engineering calculations. The correlations are used when experimental PVT data from particular field are missing. Additional advantages of the correlations are saving of cost and time.
This paper proposes a correlation to calculate the solution gas -oil ratio at pressures below bubble point pressure. It was obtained by multiple linear regression analysis of PVT data collected from many Iraqi fields.
In this study, the solution gas-oil ratio was taken as a function of bubble point pressure, stock tank oil gravity, reservoir pressure, reservoir temperature and relative gas density.
The construction of the new correlation is depending on thirty seven PVT reports th
