new Schiff base 4-chlorophenyl)methanimine (6R,7R)-3-methyl-8-oxo-7-(2-phenylpropanamido)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate= (HL)= C23H20 ClN3O4S) has been synthesized from β-lactam antibiotic (cephalexin mono hydrate(CephH)=(C16H19N3O5S.H2O) and 4-chlorobenzaldehyde . Figure(1) Metal mixed ligand complexes of the Schiff base were prepared from chloride salt of Fe(II),Co(II),Ni(II),Cu(II),Zn(II) and Cd (II), in 50% (v/v) ethanol –water medium (SacH ) .in aqueous ethanol(1:1) containing and Saccharin(C7H5NO3S) = sodium hydroxide. Several physical tools in particular; IR, CHN, 1H NMR, 13C NMR for ligand and melting point molar conductance, magnetic moment. and determination the percentage of the metal in the complexes by flame(AAS). The ligands and there metal complexes were screened for their antimicrobial activity against four bacteria (gram + ve) and (gram -ve) {Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus}. The proposed structure of the complexes using program, Chem office 3D(2006). The general formula have been given for the prepared mixed ligand complexes Na2[M(Sac)3(L)], M(II) = Fe (II), Co(II) , Ni(II), Cu (II), Zn(II) , and Cd(II). HL= C29H24 ClN3O4S, L= C29H23 ClN3O4S -.
In this article, new Schiff base ligand LH-prepared Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II), and Pt(II) materials were analyzed using spectroscopy (1 Metal: 2 LH). The ligand was identified using techniques such as FTIR, UV-vis, 1H-13C-NMR, and mass spectra, and their complexes were identified using CHN microanalysis, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements, and magnetic susceptibility. According to the measurements, the ligand was bound to the divalent metal ions as a bidentate through oxygen and nitrogen atoms. The complexes that were created had microbicide activity against two different bacterial species and one type of fungus. DPPH techniques were bei
... Show MoreThis research involved synthesis of new β-Lactam derivative from Azo compound[4-amino-N-(pyrimidine-2-yl)-3-(pyrimidine-2-yldiazenyl) benzene sulfonamide] (S1) record previously by many steps. Starting conversion the free amino group in an azo comp. to chloro acetamide derivative(S2), then reacted it with urea to give the oxazole ring derivative (S3) that which containing free amino group. The condensation reaction between the amino group and P-bromobenzaldehyde to produce Shiff base (B14). Finally staudinger's cyclo addition reaction go run between the Shiff base derivative (B14) and chloro acetyl chloride in the presence of tri ethyl amine (Et3N) as Base catalyst and dioxane a
... Show MoreCoupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
In this study, novel Schiff base complexes with Zn(II) and Co(II) ions were successfully synthesized. The malonic acid dihydrazide was converted into the Schiff base ligand by combining it with 1-hydroxy-2-naphthaldehyde, and the last step required reacting it with the appropriate metal(II) chloride to produce pure target complexes. The generated complexes were thoroughly characterized using FTIR, 1H-NMR, 13C-NMR, GC-mass, and UV-Vis spectroscopies. In order to photo-stabilize polystyrene (PS) and reduce the photodegradation of its polymeric chains, these chemicals have been used in this work. The efficiency of the generated complexes as photo-stabilizers was evaluated using a variety of techniques, including FTIR, weight loss, visc
... Show MoreThe azo ligand obtained from the diazotization reaction of 2-aminobenzothiazole and 4- nitroaniline yielded a novel series of complexes with Co(II), Ni(II), Cu(II), and Zn(II) ions. The complexes were investigated using spectral techniques such as UV-Vis, FT-IR, 1H and 13C NMR spectroscopic analyses, LC-MS and atomic absorption spectrometry, electrical conductivity, and magnetic susceptibility. The molar ratio of the synthesized compounds was determined using the ligand exchange ratio, which revealed the metal-ligand ratios in the isolated complexes were 1:2. The synthesized complexes were tested for antimicrobial activity against S. aureus, E. coli, C. albicans, and C. tropicalis bacterial species. Additionally, their binding affinities we
... Show MoreA new ligand N-((4-(phenylamino) phenyl) carbamothioyl) acetamide (PCA) was synthesized by reaction of (4-amino di phenyl amine) with (acetyl isothiocyante) by using acetone as a solvent. The prepared ligand(PCA) has been characterization by elemental analysis (CHNS), infrared(FT-IR),electronic spectral (UV-Vis)&1H,13C- NMR spectra. Some Divalent Metal ion complexes of ligand (PCA) were prepared and spectroscopic studies by infrared(FT-IR), electronic spectral (UV-Vis), molar conductance, magnetic susceptibility and atomic absorption. The results measured showed the formula ofFall prepared complexes were [M (PCA)2 Cl2] (M+2 = Mn, Co, Ni, CU, Zn, Cd &Hg),the proposed geometrical structure for all complexes wereeoctahedral.
New series of metal ions complexes have been prepared from the new ligand 1,5- Dimethyl-4- (5-oxohexan-2- ylideneamino) -2-phenyl- 1H-pyrazol-3 (2H)-one derived from 2,5-hexandione and 4-aminophenazone. Then, its V(IV), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) complexes prepared. The compounds have been characterized by FT-IR, UV-Vis, mass and 1H and 13C-NMR spectra, TGA curve, magnetic moment, elemental microanalyses (C.H.N.O.), chloride containing, Atomic absorption and molar conductance. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase, the heat of formation, (binding, total and electronic energy) and dipole moment at 298 K.