Magnetosphere is a region of space surrounding Earth magnetic field, the formation of magnetosphere depends on many parameters such as; surface magnetic field of the planet, an ionized plasma stream (solar wind) and the ionization of the planetary upper atmosphere (ionosphere). The main objective of this research is to find the behavior of Earth's magnetosphere radius (Rmp) with respect to the effect of solar wind kinetic energy density (Usw), Earth surface magnetic field (Bo), and the electron density (Ne) of Earth's ionosphere for three years 2016, 2017 and 2018. Also the study provides the effect of solar activity for the same period during strong geomagnetic storms on the behavior of Rmp. F
... Show MoreIn this work, the geomagnetic storms that occurred during solar cycles 23 and 24 were classified based on the value of the Disturbance Storm Time index (Dst), which was considered an indicator of the strength of geomagnetic conditions. The special criterion of Dst >-50 nT was adopted in the classification process of the geomagnetic storms based on the minimum daily value of the Dst-index. The number of geomagnetic storms that occurred during the study period was counted according to the adopted criteria, including moderate storms with (Dst >-50 nT), strong storms with (Dst >-100 nT), severe storms with (Dst >-200 nT), and great storms with (Dst >-350 nT). The statistica
The ionospheric characteristics exhibit significant variations with the solar cycle, geomagnetic conditions, seasons, latitudes and even local time. Representation of this research focused on global distribution of electron (Te) and ion temperatures (Ti) during great and severe geomagnetic storms (GMS), their daily and seasonally variation for years (2001-2013), variations of electron and ion temperature during GMS with plasma velocity and geographic latitudes. Finally comparison between observed and predicted Te and Ti get from IRI model during the two kinds of storm selected. Data from satellite Defense Meteorological Satellite Program (DMSP) 850 km altitude are taken for Te, Ti and plasma velocity for different latitudes during great
... Show MoreThe present work aimed to make a comparative investigation between three different ionospheric models: IRI-2020, ASAPS and VOACAP. The purpose of the comparative study is to investigate the compatibility of predicting the Maximum Usable Frequency parameter (MUF) over mid-latitude region during the severe geomagnetic storm on 17 March 2015. Three stations distributed in the mid-latitudes were selected for study; these are (Athens (23.50o E, 38.00o N), Jeju (124.53o E, 33.6o N) and Pt. Arguello (239.50o W, 34.80o N). The daily MUF outcomes were calculated using the tested models for the three adopted sites, for a span of five-day (the day of the event and two days preceding and following the event day). The calculated datasets were co
... Show MoreKp index correlates with the many magnetosphere properties, which are used to measure the level of magnetic activity. In the solar system, the two different planets, Mercury with weak magnetic field and Jupiter with strong magnetic field, are selected for this study to calculate the planet's magnetosphere radius (RMP) which represents the size of magnetosphere compared with solar activity through Kp index, through two types of geomagnetic conditions; quiet and strong for the period (2016-2018). From the results, we found that there are reversible relations between them during strong geomagnetic storms, while there are direct relations during quiet geomagnetic conditions. Also it is found that the
... Show MoreAbstract
In this research, a study of the behavior and correlation between sunspot number (SSN) and solar flux (F10.7) have been suggested. The annual time of the years (2008-2017) of solar cycle 24 has been adopted to make the investigation in order to get the mutual correlation between (SSN) and (F10.7). The test results of the annual correlation between SSN & F10.7 is simple and can be represented by a linear regression equation. The results of the conducted study showed that there was a good fit between SSN and F10.7 values that have been generated using the suggested mutual correlation equation and the observed data.
Objective: To determine the correlation between the second derivative of digital pulse wave and the QT variability index. Method: The cross-sectional study was conducted from October 2021 to May 2022 at the Department of Physiology, College of Medicine, University of Mustansiriyah, Baghdad, Iraq, and comprised healthy women. Samples were raised by simple random technique. Digital pulse waves were captured using a fingertip pulse wave transducer. Lab Chart Pro version 7.2 was used to automatically detect and quantify the amplitude of A, B, C, D and E waves expressed by the second derivative. QT interval of each beat was recorded by electrocardiogram, and was calculated automatically via Lab chart Pro version 7.2 without averaging. D
... Show MoreIn this work various correlation methods were employed to investigate the annual cross-correlation patterns among three different ionospheric parameters: Optimum Working Frequency (OWF), Highest Probable Frequency (HPF), and Best Usable Frequency (BUF). The annual predicted dataset for these parameters were generated using VOCAP and ASASPS models based on the monthly Sunspot Numbers (SSN) during two years of solar cycle 24, minimum 2009 and maximum 2014. The investigation was conducted for Thirty-two different transmitter/receiver stations distributed over Middle East. The locations were selected based on the geodesic parameters which were calculated for different path lengths (500, 1000, 1500, and 2000) km and bearings (N, NE, E, S
... Show MoreIn this work, the impact of different geomagnetic storm events on the plasma-sphere layer (ionosphere layer) over the northern and southern hemisphere regions was investigated during solar cycle 23. To grasp the influence of geomagnetic storms on the behavior and variation of the critical frequency parameter of the F2 ionospheric layer (foF2), five geomagnetic storms (classified as great, severe, and strong), with Disturbance storm time (Dst) values <-100 nT were chosen. Four stations located in different mid-latitude regions in northern and southern hemispheres were designated, the northern stations are: Millstone Hill (42.6° N, 288.50° W) and Rome (41.90° N, 12.50° E) and the southern stations are: Port Stanley (-51.60° S,
... Show More