Mechanical rock properties are essential to minimize many well problems during drilling and production operations. While these properties are crucial in designing optimum mud weights during drilling operations, they are also necessary to reduce the sanding risk during production operations. This study has been conducted on the Zubair sandstone reservoir, located in the south of Iraq. The primary purpose of this study is to develop a set of empirical correlations that can be used to estimate the mechanical rock properties of sandstone reservoirs. The correlations are established using laboratory (static) measurements and well logging (dynamic) data. The results support the evidence that porosity and sonic travel time are consistent indexes in determining the mechanical rock properties. Four correlations have been developed in this study which are static Young’s modulus, uniaxial compressive strength, internal friction angle, and static Poisson’s ratio with high performance capacity (determination coefficient of 0.79, 0.91, 0.73, and 0.78, respectively). Compared with previous correlations, the current local correlations are well-matched in determining the actual rock mechanical properties. Continuous profiles of borehole-rock mechanical properties of the upper sand unit are then constructed to predict the sand production risk. The ratio of shear modulus to bulk compressibility (G/Cb) as well as rock strength are being used as the threshold criterion to determine the sanding risks. The results showed that sanding risk or rock failure occurs when the rock strength is less than 7250 psi (50 MPa) and the ratio of G/Cb is less than 0.8*1012 psi2. This study presents a set of empirical correlations which are fewer effective costs for applications related to reservoir geomechanics.
The new compounds of pyrazolines were synthesized from the reaction of different acid hydrazide with ethylacetoacetate and ethanol under reflux. These compounds were obtained from many sequence reactions. The 4-acetyl-5-methyl-2,4-dihydro-3H-pyrazol-3-one compounds synthesized from the reaction of 5-methyl-2,4-dihydro-3H-pyrazol-3-one with acetyl chloride in calcium hydroxide and 1,4-dioxane. Finaly, Schiff bases were prepared via condensation reaction of products of mono- and tri ketone derivatives[IV]a, b with phenyl hydrazines as presented in (Scheme 1, 2). The synthesized compounds were identification by using FTIR, NMR and Mass spectroscopy (of some of them).
The electrochemical polymerization of the monomer sulfanilamide (SAM) in an aqueous solution at room temperature produces polysulfanilamide (PSAM). The Fourier Transform Infrared spectroscopy (FTIR) was used to investigate the properties of the prepared polymer layer that generated on the stainless steel (St.S) surface (working electrode) and Atomic Force Microscope (AFM) was used to characterize the morphology, topology, and detailed surface structure of polymer layer that generated on the surface. The corrosion behavior of uncoated and coated St.S were evaluated by using the electrochemical polarization method in a 0.2 M HCl solution and a temperature range of 293–323 K, the anticorrosion action of the polymer coating on stainless steel
... Show MoreBackground In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
In This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show MoreIn this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles ha
... Show MoreBackground: The microbial production of substances that have the potency to suppress the growth of other microorganisms is probably one of the prevalent defense strategy developed in nature, microorganisms produce a variable bunch of microbial defense systems, which include antibiotics, metabolic by-products, lytic agents, bacteriocins and others. Objective: The purpose of the present study was to isolate and identify Enterococcus faecium isolates then detecting its ability of carrying the gene responsible for enterocin production in this species. Materials and methods: Out of 50 samples from different sources (food and clinical sources) were collected for the Enterococcus faecium isolation, and the isolated bacteria Enterococ
... Show More