Mechanical rock properties are essential to minimize many well problems during drilling and production operations. While these properties are crucial in designing optimum mud weights during drilling operations, they are also necessary to reduce the sanding risk during production operations. This study has been conducted on the Zubair sandstone reservoir, located in the south of Iraq. The primary purpose of this study is to develop a set of empirical correlations that can be used to estimate the mechanical rock properties of sandstone reservoirs. The correlations are established using laboratory (static) measurements and well logging (dynamic) data. The results support the evidence that porosity and sonic travel time are consistent indexes in determining the mechanical rock properties. Four correlations have been developed in this study which are static Young’s modulus, uniaxial compressive strength, internal friction angle, and static Poisson’s ratio with high performance capacity (determination coefficient of 0.79, 0.91, 0.73, and 0.78, respectively). Compared with previous correlations, the current local correlations are well-matched in determining the actual rock mechanical properties. Continuous profiles of borehole-rock mechanical properties of the upper sand unit are then constructed to predict the sand production risk. The ratio of shear modulus to bulk compressibility (G/Cb) as well as rock strength are being used as the threshold criterion to determine the sanding risks. The results showed that sanding risk or rock failure occurs when the rock strength is less than 7250 psi (50 MPa) and the ratio of G/Cb is less than 0.8*1012 psi2. This study presents a set of empirical correlations which are fewer effective costs for applications related to reservoir geomechanics.
The present researchers are trying to enhance the properties of paper sheet that used widely in many fields such as printing and packaging. The enhancement of paper quality is also possible to preserve paper documents of all kinds, as they are the true record, full of the history, achievements of the human being and the intellectual and cultural of the country. It is possible to improve its physical and mechanical properties and preserve them from damage through the use of some solutions of polymeric adhesives, which act as protective barriers against water and moisture penetration. The paper also has the advantage of porosity, which has been overcome by using three types of polymeric adhesives (Nitro Cellulose, Polyvinyl alcohol acetate, a
... Show MoreInthis investigation the epoxy was reinforced by orange peel and carbonized orange peel particles with percentages (5%, 10%, 15% and 20% by weight).Mechanical tests like:Tensile, flexural,Hardness, impact and compression were carried out on these natural epoxy composites. The results showed the tensile strength have a higher value by adding (15% by weight )of orange peel and carbonized orange peel particles to epoxy,while the value (10% by weight ) of addition is suitable to get improvement in the other mechanical properties as flexural strength, Hardness, impact and compressive strength. The epoxy / carbonized orange peel powder have the best valuesin all mechanical properties than t
This study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show MoreThis study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.
After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o
... Show MoreA friction stir spot welding (FSSW) process is an emerging solid state joining process in which the material that is being welded does not melt. In this investigation an attempt has been made to understand the effect of tool shoulder diameter on the mechanical properties of the joint. For this purpose four welding tools diameter (10,13, 16 and 19) mm at constant preheating time and plunging time were used to carry
out welding process. Effect of tool diameter on mechanical properties of welded joints was investigated using shear stress test and Microhardness of joint which welded was studied. Based on the stir welding experiments conducted in this study the results show that aluminum alloy (1200) can be welded using (FSSW) process with
Roller compacted concrete (RCC) is a concrete compacted by roller compaction. The concrete mixture in its unhardened state must support a roller while being compacted. The aim of this research work was to investigate the behavior and properties of roller compacted concrete when constructed in the laboratory using roller compactor manufactured in local market to simulate the field conditions. The roller compaction was conducts in three stages; each stage has different loading and number of passes of the roller. For the first stage, a load of (24) kg and (5) passes in each direction had been employed. For the second stage, a load of (104) kg and (10) passes in each direction were conducted. Finally, at the third stage, a load of (183) kg a
... Show MoreThe application of pultruded (GFRP) composite has become increasingly prominent in civil infrastructure projects. This study provides a comprehensive analysis of experimental and numerical studies conducted on the mechanical characteristics of (GFRP) composites across various temperature conditions, encompassing ambient and fire scenarios. The compilation comprises over 100 scholarly articles that examine the mechanical behavior of (GFRP) materials, specifically emphasizing their tensile and compressive strengths, showed the mechanical properties of (GFRP) materials are commonly compromised when exposed to high temperatures that approach or surpass the resin's glass transition temperature (Tg). In contrast, temperatures that are low
... Show MoreIn this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The e
... Show MoreThe experiments were conducted in laboratory conditions of a temperature of 25± 2C and relative moisture of 40± 5 % to evaluate the effectiveness of the cinnamon, lavender and clove essential oils on some biological life aspects of cowpea beetle, C. maculates. Results of the obligative experiment for the effect of the oils on insect adult killing showed that the concentration of 5% caused a mortality percentage averaged 13.33% of the insect males. The mortality percentage of the insect females was 11.3% for the cinnamon and lavender oils. The lavender oil had the lowest effect on adult killing, not exceeding 0. For the effect of the oils on egg laying, clove oil affected the number of eggs highly at the concentration of 5%, result
... Show MoreThe experiments were conducted in laboratory conditions of a temperature of 25± 2C and relative moisture of 40± 5 % to evaluate the effectiveness of the cinnamon, lavender and clove essential oils on some biological life aspects of cowpea beetle, C. maculates. Results of the obligative experiment for the effect of the oils on insect adult killing showed that the concentration of 5% caused a mortality percentage averaged 13.33% of the insect males. The mortality percentage of the insect females was 11.3% for the cinnamon and lavender oils. The lavender oil had the lowest effect on adult killing, not exceeding 0. For the effect of the oils on egg laying, clove oil affected the number of eggs highly at the concentration of 5%, result
... Show More