Preferred Language
Articles
/
D4ZjsoYBIXToZYALYrE-
Axial Behavior of Concrete Filled-steel Tube Columns Reinforced with Steel Fibers
...Show More Authors

Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square columns, respectively. Also, the circular CFST columns exhibited better ductility than the square CFST columns due to better concrete confinement. Circular and square CFST columns with steel fibers showed improved ductility by 16.3% and 12%, respectively. The failure mode of the square CFST columns were local buckling which occurred near the end of columns, while, for the circular CFST columns, local buckling occurred near the mid-height. Also, the study involved sectional analysis that captured the behavior of CFST columns very well. The sectional analysis showed that increasing steel fiber content to 2% increased the axial load capacity by 51 and 38% for circular and square CFST columns, respectively. Furthermore, sectional analysis showed that doubling section size increased axial load capacity by approximately 4 and 5 times for circular and square columns, respectively.

Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Case Studies In Construction Materials
Push-out test of waste sawdust-based steel-concrete – Steel composite sections: Experimental and environmental study
...Show More Authors

View Publication
Scopus (16)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

Publication Date
Fri Jan 07 2022
Journal Name
Materials
Impact Behavior of Composite Reinforced Concrete Beams with Pultruded I-GFRP Beam
...Show More Authors

The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m

... Show More
View Publication
Crossref (11)
Clarivate Crossref
Publication Date
Thu Mar 10 2022
Journal Name
Buildings
Behavior of One-Way Reinforced Concrete Slabs with Polystyrene Embedded Arched Blocks
...Show More Authors

This study presents experimental and numerical investigations on seven one-way, reinforced concrete (RC) slabs with a new technique of slab weight reduction using polystyrene-embedded arched blocks (PEABs). All slabs had the same dimensions, steel reinforcement, and concrete compressive strength. One of these slabs was a solid slab, which was taken as a control slab, while the other six slabs were cast with PEABs. The main variables were the ratio of the length of the PEABs to the length of the slab (lp/L) and the ratio of the height of the PEABs to the total slab depth (hP/H). The minimum decrease in the ultimate load capacity was about 6% with a minimum reduction in the slab weight of 15%. In contrast, the maximum decrease in the

... Show More
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Oct 10 2018
Journal Name
Steel And Composite Structures
Removable shear connector for steel-concrete composite bridges
...Show More Authors

The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast co

... Show More
View Publication
Scopus (35)
Scopus Clarivate
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Post Fire Residual Concrete and Steel Reinforcement Properties
...Show More Authors

he paper presents the results of exposure of normal concrete to high temperatures (400 and 700°C). In addition to the exposure of steel reinforcement bar Ø 12 mm, where two types of steel reinforcement burning situations were performed. Directly exposed to high temperatures (400 and 700°C) and others were covered by concrete layer (15 mm). From the experimental results of fire exposure for 1 hour of 400 and 700°C and gradually cooled, it was found that the residual average percentage of compressive strength of concrete was 85.3 and 41.4%, while the residual average percentage of modulus of elasticity of concrete was 75 and 48%, respectively. The residual average percentage of yielding tensile stress (Ø 12 mm) after burning and cooling

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Results In Engineering
Behavioral nonlinear modeling of prestressed concrete flexural members with internally unbonded steel strands
...Show More Authors

View Publication
Scopus (15)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Direct Shear Behavior of Fiber Reinforced Concrete Elements
...Show More Authors

Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.

This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressiv

... Show More
View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
The Effects of Maximum Attapulgite Aggregate Size and Steel Fibers Content on Fresh and Some Mechanical Properties of Lightweight Self Compacting Concrete
...Show More Authors

The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Serviceability Performance of Externally Prestressed Steel-Concrete Composite Girders
...Show More Authors

The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti

... Show More
View Publication Preview PDF
Crossref (2)
Crossref