Disasters, crises and wars are a serious and unforeseen threat. The capacity of the early warning system to monitor such crises is therefore crucial. The ability to make quick decisions in a short time is necessary to prevent crises from occurring. Here, the role and effectiveness of the early warning system emerges through its ability to monitor, record and analyze signals. It can also be evidenced by its ability to immediately convey these indicators to the concerned authorities to take measures that ensure these conflicts and disasters do not worsen. The system’s ability to detect disasters and crises, identify the crisis and its type, and use the scientific method and common sense to deal with it is something that contributes to finding the best way to manage the crisis. Thus, the adverse effects of crises can be avoided, including: physical and moral effects, effects with a clear direct impact of the crisis, or indirect effects, long-term, medium-term and short-term effects. Therefore, in this study, we will try to demonstrate the means and tools of early warning systems in the African Union in a way that allows us to identify the most prominent benefits and disadvantages of these systems, and then analyze them in detail
Competitive swimming is a highly researched area and technological developments have aided advances in the understanding of the biomechanical principles that underpin these elements and govern propulsion. Moreover, those working in the sports field especially in swimming are interested in studying, analyzing, evaluating and developing motor skills by diagnosing the strengths and weaknesses of the skill, and accordingly, coaches and specialists correct these errors. The researchers chose this (Butterfly swimming) and the (arm length) is an important variable because the success of the stroke is greatly dependent on the propulsion generated from the arm pull, and swimmers with a longer arm span have a mechanical advantage with the resulting f
... Show MoreThis research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreThe purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
High Q-factor based on absorption can be achieved by tuning (the reflection and the transition percentage). In this work, the simple design and simulated in S-band have been investigated. The simulation results of G-shape resonator are shown triple band of absorption peaks 60%, 91.5%, and 70.3%) at resonance frequency 2.7 GHz, 3.26 GHz, and 4.05 GHz respectively. The results exhibited very high of the Q-factor ( 271 ) at resonance frequency ( 3.26 GHz ). The high Q-factor can be used to enhance the sensor sensing, narrowband band filter and image sensing.
Sol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacteri
... Show MoreSolid waste generation and composition in Baghdad is typically affected by population growth, urbanization, improved economic conditions, changes in lifestyles and social and cultural habits.
A burning chamber was installed to burn cellulosic waste only. It was found that combustion reduced the original volume and weight of cellulosic waste by 97.4% and 85% respectively.
A batch composting study was performed to evaluate the feasibility of co-composting organic food waste with the cellulosic bottom ash in three different weight ratios (w/w) [95/5, 75/25, 50/50].
The composters were kept in controlled aerobic conditions for 7 days. Temperature, moisture, and pH were measured hourly as process succe
... Show MoreThis paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
This paper deals with the F-compact operator defined on probabilistic Hilbert space and gives some of its main properties.
In this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show More