Wind turbine (WT) is now a major renewable energy resource used in the modern world. One of the most significant technologies that use the wind speed (WS) to generate electric power is the horizontal-axis wind turbine. In order to enhance the output power over the rated WS, the blade pitch angle (BPA) is controlled and adjusted in WT. This paper proposes and compares three different controllers of BPA for a 500-kw WT. A PID controller (PIDC), a fuzzy logic controller (FLC) based on Mamdani and Sugeno fuzzy inference systems (FIS), and a hybrid fuzzy-PID controller (HFPIDC) have been applied and compared. Furthermore, Genetic Algorithm (GA) and Particle swarm optimization (PSO) have been applied and compared in order to identify the optimal PID parameters (kp, ki, kd). The objective of GA and PSO is minimized the error signal in output power based on actual WS. The results for three different controllers show that the optimal hybrid FPIDC based on the Sugeno inference system with PSO produces the optimal results regard to reduce the error signal and stable output power under actual WS.
This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreThe survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as
... Show MoreThe compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).
Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.
A response surface methodology (RSM) is presen
... Show Morethis paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.
An attempt was made to evaluate the PV performance of one-axis daily tracking and fixed system for Baghdad, Iraq. Two experimental simulations were conducted on a PV module for that purpose. Measurements included incident solar radiation, load voltage and load current. The first experiment was carried out for six months of winter half of year to simulate the one-axis daily tracking. The azimuth angle was due south while the tilt angle was being set to optimum according to each day of simulation. The second experiment was done at one day to simulate the PV module of fixed angles. It is found that there is a significant power gain of 29.6% for the tracking system in respect to the fixed one. The one-axis daily tracking was much more effect
... Show More