In this study, the photodegradation of Congo red dye (CR) in aqueous solution was investigated using Au-Pd/TiO2 as photocatalyst. The concentration of dye, dosage of photocatalyst, amount of H2O2, pH of the medium and temperature were examined to find the optimum values of these parameters. It has been found that 28 ppm was the best dye concentration. The optimum amount of photocatalyst was 0.09 g/75 mL of dye solution when the degradation percent was ~ 96 % after irradiation time of 12 hours, while the best amount of hydrogen peroxide was 7μl/75 mL of dye solution at degradation percent ~97 % after irradiation time of 10 hours, whereas pH 5 was the best value to carry out the reaction at the highest degradation percent. In addition, temperature tested at range of (25-55) C˚, and it has been figured out which photodegradation percent of dye increase with raising temperature (degradation percent was ~ 98% after irradiation time of 4 hours at 55 C˚), and the activation energy of the reaction was calculated (34.8016 kJ/mole) from Arrhenius law. The thermodynamic functions ΔH#, ΔG#, and ΔS# were obtained, where ΔH# and ΔG# are positive value which means that the reaction is endothermic and non-spontaneous respectively, while ΔS# has a negative value, thus indicates that the reactants are more disordered than the excited intermediate formed. The kinetic of the reaction was studied, and it has been found that the photocatalytic reaction follows pseudo first order reaction.
A series of adsorption laboratory experiments were conducted to study the sorption efficiency of bentonite in removal Cd from aqueous solutions. The bentonite was found to be a good receptive to the adsorption of Cd under specific laboratory conditions. The sorption capacity for Cd onto bentonite was investigated through the variation in pH and initial Cd2+ concentration. The sorption efficiency onto bentonite was examined as a function of pH, initial ion concentration, equilibrium reaction time and solid mass/ liquid volume ratio. The maximum sorption (%) of Cd from solutions were determined when solid to liquid ratio is 2 gm of bentonite versus 50 ml solution, the equilibrium reaction time is 50 minute at pH ranges from 5-7. The sorpti
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions. A st
... Show MoreModified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.
... Show MoreIn this paper, an inexpensive, simple and well-accurate process of the generation of bimetallic silver Ag//gold Au core//shell is colloidal metal nanoparticles (MNPs). This is achieved via an atmospheric pressure non-thermal plasma glow discharge between two electrodes. One of these electrodes is a capillary tube placing over solution about (1 cm) that acts as the cathode, while the other electrode is a metal disk immersed in the solution and acts as an anode. Glow discharge process carried out at room temperature using a home-made cell with (6 KV) applied voltage and direct current (DC) about (1.8 mA) for different discharge periods. A wide range of bimetallic Ag//Au colloidal MNPs was rapidly synthesized as a result of non-thermal plas
... Show MoreCoagulation - flocculation are basic chemical engineering method in the treatment of metal-bearing industrial wastewater because it removes colloidal particles, some soluble compounds and very fine solid suspensions initially present in the wastewater by destabilization and formation of flocs. This research was conducted to study the feasibility of using natural coagulant such as okra and mallow and chemical coagulant such as alum for removing Cu and increase the removal efficiency and reduce the turbidity of treated water. Fourier transform Infrared (FTIR) was carried out for okra and mallow before and after coagulant to determine their type of functional groups. Carbonyl and hydroxyl functional groups on the surface of
... Show MoreIn this study a new strain of mesophilic Bacillus subtilis AIK, recorded for the first time in Iraq, was used to remove nickel (Ni) from aqueous solutions. The factors that affect bioremediation include temperature, pH value and metal concentrations. The results showed that the highest removal efficiency (R%) was 54, 52 and 48% at 25⁰C and pH of 5, 7 and 9, and with 10 ppm Ni concentration respectively. Whereas the highest R% recorded was 47, 45 and 52% at 30⁰C and of pH 5, 7, and 9 with 1 ppm Ni concentration respectively. On the other hand, the highest R% at 40⁰C was 49, 46, 42 % at pH 5, 7 and 9, with 5, 10 and 10 ppm Ni concentrations respectively. The results also showed that the optimum pH value for Ni removal at bot
... Show MoreThe subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati
... Show MoreThis research aims to test the ability of glass waste powder to adsorb cadmium from aqueous solutions. The glass wastes were collected from the Glass Manufacturing Factory in Ramadi. The effect of concentration and reaction time on sorption was tested through a series of laboratory experiments. Four Cd concentrations (20, 40, 60, and 80) as each concentration was tested ten times for 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 min. Solid (glass wastes) to liquid was 2g to 30ml was fixed in each experiment where the total volume of the solution was 30ml. The pH, total dissolved salts and electrical conductivity were measured at 30ºC. The equilibrium concentration was determined at 25 minutes, thereafter it was noted that the sorption
... Show MoreIn the present study, advanced oxidation treatment, the TiO2 /UV/H2O2 process was applied to decolorisation of the reactive yellow dyes in aqueous solution. The UV radiation was carried out with a 6 W low-pressure mercury lamp. The rate of color removal was studied by measuring the absorbency at a characteristic wavelength. The effects of H2O2 dosage, dye initial concentration and pH on decolorisation kinetics in the batch photoreactor were investigated. The highest decolorisation rates were observed (98.8) at pH range between 3 and 7. The optimal levels of H2O2 needed for the process were examined. It appears that high levels of H2O2 could reduce decolori
... Show More