Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS attacks in SDN efficiently. From machine learning approaches, it can be explored that the best way to detect DDoS attack is based on utilizing deep learning procedures.Moreover, analyze the methods that combine it with other machine learning techniques. The most benefits that can be achieved from using the deep learning methods are the ability to do both feature extraction along with data classification; the ability to extract the specific information from partial data. Nevertheless, it is appropriate to recognize the low-rate attack, and it can get more computation resources than other machine learning where it can use graphics processing unit (GPU) rather than central processing unit (CPU) for carrying out the matrix operations, making the processes computationally effective and fast.
Self-Assertion is the individual ability to express any emotion well, except the anxiety. The decrease of the individuals asserting behavior makes them face many difficulties that prevent their social adjustment. Moreover it reflexes many negative behavioral and physical cases. The individual, who fails to express his or her negative feelings in required situations, feels with dissatisfaction, loneliness, depression, anxiety, social anxiety, conflict, and psychological disorder.
Accordingly, the importance of this study is represented in studying the self-assertion and studying the university students who reflect the strength of society.
The following are the two aims of the study:
1. Construct an asserting behavior scale.
2.
Cover crops (CC) improve soil quality, including soil microbial enzymatic activities and soil chemical parameters. Scientific studies conducted in research centers have shown positive effects of CC on soil enzymatic activities; however, studies conducted in farmer fields are lacking in the literature. The objective of this study was to quantify CC effects on soil microbial enzymatic activities (β-glucosidase, β-glucosaminidase, fluorescein diacetate hydrolase, and dehydrogenase) under a corn (Zea mays L.)–soybean (Glycine max (L.) Merr.) rotation. The study was conducted in 2016 and 2018 in Chariton County, Missouri, where CC were first established in 2012. All tested soil enzyme levels were significantly different between 2016 and 2018
... Show MoreThis research aims to removes dyes from waste water by adsorption using banana peels. The conduct experiment done by banana powder and banana gel to compare between them and find out which one is the most efficient in adsorption. Studying the effects different factors on adsorption material and calculate the best removal efficiency to get rid of the methylene blue dye (MB).
The research discussed the possibility of adsorption of Brilliant Blue Dye (BBD) from wastewater using 13X zeolite adsorbent, which is considered a byproduct of the production process of potassium carbonate from Iraqi potash raw materials. The 13X zeolite adsorbent was prepared and characterized by X-ray diffraction that showed a clear match with the standard 13X zeolite. The crystallinity rate was 82.15% and the crystal zeolite size was 5.29 nm. The surface area and pore volume of the obtained 13X zeolite were estimated. The prepared 13X zeolite showed the ability to remove BBD contaminant from wastewater at concentrations 5 to 50 ppm and the removal reached 96.60% at the lower pollutant concentration. Adsorption measurements versus tim
... Show MoreObjective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-Ag
... Show MoreIn current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi
... Show More