Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS attacks in SDN efficiently. From machine learning approaches, it can be explored that the best way to detect DDoS attack is based on utilizing deep learning procedures.Moreover, analyze the methods that combine it with other machine learning techniques. The most benefits that can be achieved from using the deep learning methods are the ability to do both feature extraction along with data classification; the ability to extract the specific information from partial data. Nevertheless, it is appropriate to recognize the low-rate attack, and it can get more computation resources than other machine learning where it can use graphics processing unit (GPU) rather than central processing unit (CPU) for carrying out the matrix operations, making the processes computationally effective and fast.
Mosques could be considered as one of the most powerful architectural types throughout historical ages. With their highly symbolic formal legacy, Mosques play an essential role in providing the Islamic city with its special identity. Nevertheless, the advent of digital technology and its ubiquity at different levels of architectural design marked the emergence of new tendencies in the Architecture of Mosques, represented by various models added to the storage of this architectural type. Consequently a review of these tendencies would be needed, aiming at pointing out the formal transformations and new suggested characteristics.
The paper investigates the surviving and the disappearing formal components of&n
... Show MoreObjective: To assess the fear of laboring women regarding the delivery on themselves and their
newborns.
Methodology : A descriptive study was conducted on (100) pregnant women who where admitted to
labor room in Al- Yarmock Teaching Hospital/Maternity Units, Fatima Al- Zahra and Ibn-Al Baladi
Maternity and Pediatric Hospital. The questionnaire was consisted of pregnant women
socio-demographic data, reproductive data and fear items of labor. Data were collected by using a
questionnaire format, through interview technique and reviewing pregnant records, descriptive and
inferential statistical procedure were used to analyze the data.
Results: The main results of the study revealed a high mean of scores with moderate
The child spends several hours watching animated films, which affect their behavior negatively and positively. This calls parents to monitor what their children are watching, to show them the serious risks of some violent films, and to direct them toward choosing both positive and educational programs that develop their positive behavior. This study aimed to explore the positive and negative effects of watching animation films as well as to identify the role animation films in increasing the cognitive knowledge of kindergarteners. To do this, the descriptive and analytical methods were used. A questionnaire was adopted as a tool for data collection. A scale of (45) items classified into three categories was applied on the r
... Show MoreBackground/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreHuman posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreSolar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreIn this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
Vehicular ad hoc network (VANET) is a distinctive form of Mobile Ad hoc Network (MANET) that has attracted increasing research attention recently. The purpose of this study is to comprehensively investigate the elements constituting a VANET system and to address several challenges that have to be overcome to enable a reliable wireless communications within a vehicular environment. Furthermore, the study undertakes a survey of the taxonomy of existing VANET routing protocols, with particular emphasis on the strengths and limitations of these protocols in order to help solve VANET routing issues. Moreover, as mobile users demand constant network access regardless of their location, this study seeks to evaluate various mobility models for vehi
... Show MoreThis paper presents the dynamic responses of generators in a multi-machine power system. The fundamental swing equations for a multi-machine stability analysis are revisited. The swing equations are solved to investigate the influence of a three-phase fault on the network largest load bus. The Nigerian 330kV transmission network was used as a test case for the study. The time domain simulation approach was explored to determine if the system could withstand a 3-phase fault. The stability of the transmission network is estimated considering the dynamic behaviour of the system under various contingency conditions. This study identifies Egbin, Benin, Olorunsogo, Akangba, Sakete, Omotosho and Oshogbo as the key buses w
... Show MoreComputer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead
... Show More