Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS attacks in SDN efficiently. From machine learning approaches, it can be explored that the best way to detect DDoS attack is based on utilizing deep learning procedures.Moreover, analyze the methods that combine it with other machine learning techniques. The most benefits that can be achieved from using the deep learning methods are the ability to do both feature extraction along with data classification; the ability to extract the specific information from partial data. Nevertheless, it is appropriate to recognize the low-rate attack, and it can get more computation resources than other machine learning where it can use graphics processing unit (GPU) rather than central processing unit (CPU) for carrying out the matrix operations, making the processes computationally effective and fast.
Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreThe quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreAbstract
In order to determine what type of photovoltaic solar module could best be used in a thermoelectric photovoltaic power generation. Changing in powers due to higher temperatures (25oC, 35oC, and 45oC) have been done for three types of solar modules: monocrystalline , polycrystalline, and copper indium gallium (di) selenide (CIGS). The Prova 200 solar panel analyzer is used for the professional testing of three solar modules at different ambient temperatures; 25oC, 35oC, and 45oC and solar radiation range 100-1000 W/m2. Copper indium gallium (di) selenide module has the lowest power drop (with the average percent
... Show MoreThe aim of this research was to indicate the opinion of the Iraqi consumer awareness of the risks associated with consuming canned food, the questionnaire was included 20 questions for label information, consumer culture, shopping, marketing, awareness and knowledge as a tool to survey the opinions of 300 consumers in Baghdad, the data was analyzed by using percentage, weighted mean, and weight percent, the results obtained showed that the Iraqi consumer need more information, training and guidance programs in food safety handling issue for canned food, especially in analysis of label information and growing of consumer culture for shopping, right marketing, awareness and knowledge.
In this paper, we studied the spark corona discharge in tap and distillited waters. The results show the shape of cone that generated on the tip of capillary tube is different with conductivity of liquids. The blue glow appears at the end of capillary tube and the drop extends into a cone. In addition, the conducitivity is affected on the relationship between the appearance of the blue glow discharge with the applied voltage. The size of the cone decreases with an increase in applied voltage. The cone diameter at the base of capillary tube oscillates with period approximately 1 Sec. this oscillates in the cone diameters is due to the change distance between the liquid electrode and the surface of liquid. The intensity of spark corona dis
... Show MoreStable new derivative (L) Bis[O,O-2,3;O,O-5,6(carboxylic methyliden)]L-ascorbic acid was synthesized in good yield by the reaction of L-ascorbic acid with dichloroacetic acid with ratio (1:2) in presence of potassium hydroxide. The new (L) was characterized by 1H,13C-NMR, elemental analysis (C,H) and Fourier Transform Infrared (FTIR). The complexes of the ligand (L) with metal ion, M+2= (Cu, Co, Ni, Cd and Hg) were synthesized and characterized by FTIR, UV-Visible, Molar conductance, Atomic absorption and the Molar ratio. The analysis evidence showed the binding of the metal ions with (L) through bicarboxylato group manner resulting in six-coordinated metal ion.
ABSTRACT: Protein isolate was achieved from local peeled non soaked pumpkins seeds by using petroleum ether with protein percentage of 53.15%. Protein isolate was used in manufacturing meat burger with two substitution10 and 20%. The shrinkage percentage for burger diameter was decreased from 25.5 to 16.6%, the sample with 10% substitution was distinguished in water holding capacity (WHC) which was 54.52%. Sensitive evaluation for these samples showed that the burger with 10% substitution was similar to the control.